Semantic conflict detection via dynamic analysis

Amanda Moraes
Centro de Informética
Universidade Federal de Pernambuco
Brazil
ascm@cin.ufpe.br

Abstract

During collaborative software development, a semantic con-
flict may occur when the individual behavior expected by
different developers is no longer preserved after merging
their branches. While potential semantic conflicts are not
captured via textual merge tools, different approaches have
already been proposed based on static analysis or automated
test generation to verify behavioral changes given a merge
scenario. However, these approaches share some limitations
regarding scalability and reporting false positives and nega-
tives. Trying to address these limitations, in this work, we
assess the detection of conflicts by focusing on overriding
assignments in JavaScript code through dynamic analysis.
Dynamic analysis allows us to detect changes involving writ-
ing operations to the same state element at runtime and does
not need assertions about the under-analysis code, such as in
test-based approaches, requiring only the final version of the
merged code (post-merge) to be executed. To evaluate our ap-
proach, besides translating test cases from related works, we
empirically analyze merge scenarios from 50 JavaScript open-
source projects hosted on GitHub, from which we correctly
detected one scenario of overriding assignment representing
a potential semantic conflict with no false positives.

Keywords: Semantic Conflict Detection, Dynamic Analysis,
Overriding Assignment, JavaScript

1 Introduction

In the software development process, adopting tools to man-
age different versions of projects’ files facilitates the evo-
lution and maintenance of the contributions implemented
simultaneously by multiple authors over time [4]. However,
when contributions from different branches are merged, tex-
tual conflicts may be reported by widely used version control
tools, which occurs due to changes made to the same region
or in consecutive lines of a file [1, 8].

According to Horwitz et al. [15], merge tools that are based
on textual differential analysis (e.g., Git and Diff3 [11, 16])
have limited usefulness in the context of software projects
as they do not provide guarantees regarding the behavior
of the program under integration [3] and do not analyze its
content as instructions, only as a textual structure. Behavior,
therefore, is a key aspect to semantically analyze whether
the merge result of a program is in disagreement with the
original individual contributions that originated it. Unlike

Paulo Borba
Centro de Informatica
Universidade Federal de Pernambuco
Brazil
phmb@cin.ufpe.br

Léuson Da Silva
Polytechnique Montreal
Canada
leuson-mario-pedro.da-
silva@polymtl.ca

textual conflicts, behavioral semantic conflicts represent the
behavioral differences between a program’s pre- and post-
merge versions, impacting how the software works when
executed (either during test suites or even in production en-
vironments). The motivation to detect this kind of conflict
is due to the divergence of behavior that occurs even when
the integration is textually and syntactically valid [7], result-
ing in a scenario that incurs costs for software development
when not noticed before execution.

The expected behavior intended by a software contributor
is hard to assess and, in this context, can be approximated
into program specifications about how it should work, while
its unexpected change (potential semantic conflict) can be
approximated by the concept of interference. According to
Horwitz et al. [15], two contributions interfere with each
other in an unplanned way if the specifications individually
satisfied by each of them are not satisfied by the program
that integrates them. Often, the specifications of contribu-
tions or the intentions of each contributor participating in
an integration scenario are not explicitly defined in the code,
but they might be assumed based on documentation [30],
comments [28], or implicitly expressed due to the legibil-
ity of the code under integration [22]. Hence, the detection
of those interferences could reduce potential semantic con-
flicts ! and their associated costs, such as broken features
or production debugging due to errors introduced with the
interfering integrations.

In light of the above, previous works have proposed tools
for detecting semantic conflicts based on the concept of in-
terference via static analysis [2, 26]. Such approaches suffer
from low scalability of System Dependence Graphs, which is
adopted to represent programs under analysis, given their
computational complexity. Da Silva et al. [5] take a different
route by exploring the generation of unit tests. For that, the
authors present SAM, a semantic merge tool executed on the
four versions of a merge scenario (base, left, right, and merge
commits). Conversely, SAM demands the implementation
of assertions about third-party code and, therefore, tends
to point to more false negative cases relying on the testing
coverage achieved and the values used in the resulting test
cases.

!n this work behavioral semantic conflicts will be simply called semantic
conflicts, as other classifications such as static and syntactic will not be
addressed

SBLP 2024, September 2024, Curitiba, Parana, BR

In this study, we delve into the detection of semantic con-
flicts through dynamic analysis. If compared to the unit test
generation approach, the presented solution does not require
assertions about the software to be executed and is only ex-
pected to run on one merge scenario version (the merge
commit one), while the tests must be ran over left, right,
base and merge commit to detect interferences. Considering
the also mentioned static analysis approach, because the
dynamic analysis occurs at runtime, the complexity of the
execution is coupled to the original input complexity except
for the semantic conflict detection algorithm, which leads
to a unique control flow path execution (in static analysis
many could be taken into account) that reduces false posi-
tives. For that, we explore the Jalangi2 framework to analyze
JavaScript code [25] and detect interferences resulting from
overriding assignments (OA), similar to the static analysis
proposed by Barbosa et al. [2] for Java code.

To validate the proposed dynamic analysis, we translated
more than 60 test cases representing positive and negative
cases for overriding assignment, which were adapted from
the tests defined by Barbosa et al. [2] for its static analysis
of overriding assignment in Java code. Furthermore, we per-
form an empirical study exploring the overriding assignment
detection through a sample of 159 merge scenarios extracted
from JavaScript open-source repositories. Although most
of the samples were considered negatives according to the
proposed analysis, our results show the potential of our ap-
proach by reporting the detection of one true positive inter-
ference with no associated false positives. As contributions
to our work, we highlight:

e A new approach to detect semantic conflicts due to
overriding assignments based on dynamic analysis;

o A dataset of merge scenarios, with and without seman-
tic conflicts in JavaScript;

e We provide our scripts and related data, supporting
replications and running future studies.

The rest of the paper is organized as follows. Section 2 mo-
tivates the problem under investigation here, while Section 3
presents our proposed dynamic analysis, focusing on the
overriding assignment. In Section 4, we present the method-
ology steps for our empirical evaluation and its associated
results, while discussing them in Section 5. Threats to the
validity of our study are described in Section 6 and related
works are discussed in Section 7. Finally, in Section 8, we
present our conclusions.

2 Concepts and Motivation

The behavioral semantic conflicts this work addresses can be
illustrated with the example in Figure 1 (based on [2]). Con-
sider there is a method called generateReport whose body
contains excerpts inserted by the developers of Left and Right
as a result of merging their branches, respectively. From now

Amanda Moraes, Paulo Borba, and Léuson Da Silva

on, a merge will refer to 3-way merge [10], meaning it cre-
ates a merge commit to integrate the changes proposed by
two divergent branches with a common ancestor (the base
commit). The two contributing branches that originated the
merge may be referred to as Left and Right from here on.

class Text {
constructor () {
this.text = "";
this.fixes = 0;
this.comments = 0;

}

generateReport () {
countDuplicatedWhitespaces(); // Left
countComments () ;
countDuplicatedWords(); // Right

Figure 1. Example of semantic conflict after the merging of
branches Left and Right

Additionally, assume that, in Figure 1, the countDuplicat-
edWhiteSpaces method invoked by Left writes to the fixes
attribute of the class, which means the number of correc-
tions to be applied due to spaces in white duplicates of text.
In the same way, the call to countDuplicatedWords added
by Right has a similar behavior by also writing on the at-
tribute fixes regarding the duplicate words. In the end, we
can assume that the result of the merge between the two
branches does not satisfy what one of them (Left) implicitly
intended with its contribution, as the fixes attribute will be
last updated according to the definition of just one parent
(Right).

The analyzed example corresponds to a semantic conflict,
whose interference between contributions arises from an
overriding assignment (OA). Barbosa et al. [2] mention that
there may be OA when changes (additions and modifications)
to one of the branches may semantically (i.e., its execution)
involve a write operation to a state element that is also asso-
ciated with a write operation involved in the changes made
by the other branch, with no previous existing write opera-
tion occurring to the same element between them. In other
words, if, in the example of Figure 1, the countComments
method also wrote to the fixes attribute, there would be no
conflict as fixes would already be known to be overwritten
for Left before the merging operation. Such an observation
is valid as the call for countComments is an instruction orig-
inating from the merge base, which already existed before
any modification of Left or Right.

According to Misra [18], the state of a program is defined
by the values of its variables, whether local or global. During
execution, variables translate into memory addresses, and
in this sense, arrays and objects, along with their associated
elements, fields, and other variables, collectively contribute

Semantic conflict detection via dynamic analysis

to the state of the program. As a result, the state elements
that will be considered to identify overriding assignments
in this study are those that undergo an explicit assignment
operation at the code level, and that can be represented not
only by variables but also accessed from them (such as via
indexes and keys), which are independent and individual
states despite those that reference them.

Additionally, we propose an interprocedural dynamic anal-
ysis of OA, which is an aspect illustrated by Figure 1. By the
definition of overriding assignments, modifications or ad-
ditions from the integrated branches must involve a write
operation to a common state element semantically. In the
case at hand, it is evident that the addition of two method
calls led to conflicting assignments. In the same way, the
insertion of explicit writings would also do it.

To summarize, the semantic conflict addressed here con-
sists of unplanned interferences between contributions that
cause the behavioral result of the integration to not sat-
istfy some individual specification of them. The solution pre-
sented in the following sections aims to dynamically identify
OA as a subset of the potential semantic conflicts that can
occur in merge scenarios in JavaScript code, due to the avail-
ability of tools to build dynamic analyses for the language,
that has been a leader in the rankings of open-source soft-
ware repositories [12].

3 Detecting Interference Using Dynamic
Analysis

This section presents our approach for detecting semantic
interferences arising from overriding assignments using dy-
namic analysis on JavaScript code. Currently, the code asso-
ciated with our approach is available on GitHub [19], where
we provide instructions on how to run the analysis and re-
produce the study experiments.

3.1 Dynamic Analysis

Our approach is built on the Jalangi2 framework [25], which
is based on the discontinued Jalangi tool [27]. Such frame-
work provides an API for a simplified implementation of
custom dynamic analyses to be run on JavaScript files based
on callbacks that can be optionally defined according to the
instructions of interest. Jalangi2 proposes to instrument a
script (and its dependencies) defining events associated with
program instructions that invoke those pre-defined callbacks
at runtime; for example, it executes the declare callback
when a variable is declared. To perform such an analysis on
a script, we start a Node.js [9] process providing the path
of the JavaScript input file, additional paths associated to
required Jalangi2 native scripts or auxiliary analyses, and
extra (optional) parameters as arguments.

All callbacks have as a parameter a static and unique iden-
tifier in the file scope that allows the mapping of the current
instruction to a location in the original file (path, range of

SBLP 2024, September 2024, Curitiba, Parana, BR

lines, and columns). This functionality is important for the
analysis that this study proposes because by knowing the
lines where the instruction is located, it is possible to know if
it corresponds to any line modified by the branches involved
in a merge scenario. Therefore, the instruction’s location
can be compared with the merge commit metadata provided
as an extra parameter to the process so that assignments,
function calls, and any other operations can be linked to the
contributing branch that added or modified them.

A more detailed diagram of the artifacts involved in per-
forming our custom dynamic overriding assignment analysis
is represented in Figure 2. In this representation, one of the
extra parameters is the path to a JSON file containing meta-
data about the merge scenario, which will be accessed by
the analysis (LINE_TO_PARENT_MAP json). Throughout the
instrumented script callbacks calls, we update two sets that
store the identified assignments from Left and Right (as well
as other auxiliary data structures) in pursuit to track the
interfering writes and their current context according to the
algorithm to be described in Section 3.2. Finally, there is
the step of reporting the results at the end of the diagram
flow, which refers to interference or error events logging. In
successful executions, they are obtained from a list of inter-
ference objects filled by the proposed analysis and reported
via standard output (or stdout, such as the terminal console
where the process is running).

Processo de Andise Jaang2

input_filejs input_file_jalangi_js H End stdout

Parameters

Figure 2. Executing overriding assignment detection analy-
sis with Jalangi2

Our OA dynamic analysis output is event-based and par-
tially illustrated in Figure 3. Initially, the possible events are
ERROR or OVERRIDING ASSIGNMENT, which can be ex-
panded in future work. For the OVERRIDING ASSIGNMENT
event, the body key brings as value a short textual description
about the detected event. Additionally, the interference
carries within it the two conflicting assignments along with
the identifier of the state element (targetldentifier) that has
been overwritten (in the format of ID_LABEL, so that ele-
ments with the same name are not mismatched). Each assign-
ment from the reported interference contains their location
in the original file, the target name and identifier of the writ-
ten element, as well as the branch to which it is associated,
with L being equivalent to Left and R to Right. Eventually,
if any assignment occurs within a function or method call

SBLP 2024, September 2024, Curitiba, Parana, BR

stack which started with an invocation from some branch,
the assignment will also have an object that represents the
stack (functionCallStack) at the time it was identified, in
order to help tracking and verifying the detected interfering
changes in the original file.

{
"uuid": "a842cd04-bée3-462a-847e-3634989a798e",
"events": [
{
"type": "OVERRIDING_ASSIGNMENT",
"label": "Overriding Assignment Conflict",
"body": {
"description": "Interference detected on 33_x ...",
"interference": {
"previousAssignment": {

T
"currentAssignment": {

vid": 33,

“name": "x",
.../ifWithInvokeConflictSample/index.js:32:33:32:43)",

"isObject": true,
"functionCallStack": [
{
"id": 417,
"name": "",
"location": "(.../ifWithInvokeConflictSample/index.js:27:37:27:44)",
"branch": "R",
"beforeInvoke": true
¥
1
T
"targetIdentifier": "33_x"

¥

Figure 3. Example of OA analysis standard output result

3.2 Algorithm

The proposed overriding assignment algorithm was adapted
from the algorithm for OA detection based on static analysis
defined by Barbosa et al. [2]. The resulting algorithm for this
study is represented by the Algorithm 1, which we discuss
next.

The script s is assumed to be a sequence of events captured
by the Jalangi2 callbacks defined in the custom dynamic anal-
ysis, such as variables declarations and function calls. We
also assume that each branch that participated in the merge
operation that generated the current script has a set to store
the assignments involved by their additions or modifications,
but the same state element cannot have an assignment in
both sets simultaneously. Such restriction characterizes the
interference we are pursuing, as it means that the same tar-
get has already been assigned in previous operations by the
other merge branch. When it occurs, the past assignment is
removed from its set and the new interference is registered.
This way, the overwritten element will always remain asso-
ciated with the contributing branch whose assignment to it
is most recent while we keep track of the interfering ones,
see lines 4 to 7 of the Algorithm 1.

If an instruction not mapped to any branch also performs
an assignment (which means it is an operation that had
not been changed by Left or Right since the base commit
of the merge scenario), the corresponding element must
be removed from any assignment set to which it is associ-
ated (removeAssignmentFromAllBranches). Furthermore,

Amanda Moraes, Paulo Borba, and Léuson Da Silva

if a function call associated with one of the branches is identi-
fied (lines 10 to 11), a stack of function calls starts to be filled
until the call that started it is finished and removed from the
stack at the starting point (lines 16 to 17). This stack allows
a write operation involved by the invoked methods to be
properly associated to the branch that caused the assignment
(line 3, ~isFunctionCallStackEmpty).

Algorithm 1: Overriding Assignment Detection

Data: A script s
Result: A list of overriding assignment interferences
1 for event € s do

2 if isWrite(event) V isPutFieldPre(event) then

3 if isFromSomeBranch(event) Vv
—isFunctionCallStackEmpty() then

4 addAssignmentToCurrentBranch(event)

5 if hasAssignmentFromOtherBranch(event) then

6 updatelnter ferences(event)

7 removeAssignmentFromOtherBranch(event)

8 else

9 \ removeAssignment FromAllBranches(event)

10 if isInvokeFunPre(event) then

11 if isFromSomeBranch(event) Vv
—isFunctionCallStackEmpty() then

12 if isArrayInplaceMethod(event) then

13 | handleAssignedIndices(event)

14 else

15 | functionCallStack.push(event)

16 if isInvokeFun(event) then

17 | functionCallStack.pop()

18 if isEndExecution(event) then

19 | logResults()

4 FEvaluation and Results

An overriding assignment analysis has already been pro-
posed by Barbosa et al. [2], and test cases were made available
with assertions about the presence or absence of interfer-
ences resulting from OA. Such a test suite allows us to verify
the correctness of our proposed algorithm, and its use is
explained further in Section 4.1. In addition to the test-based
approach, evaluating the solution in the face of uncontrolled
scopes is equally important. This way, Section 4.2 explains
in more detail the empirical study in which the presented
dynamic analysis was performed on merge scenarios that
occurred in open-source JavaScript projects.

4.1 State Of The Art Evaluation

The first evaluation strategy adopted for our proposed ap-
proach consists of translating the defined test cases originally
developed for the static analysis of overriding assignment
proposed by Barbosa et al. [2]. In total, there are 71 test cases
to check the presence or absence of OA interferences in Java
code [14] which represent a diverse set of scenarios missing
or containing the interfering assignments to be detected.
Initially, each Java class representing a test case is submit-
ted to a transpilation step to JavaScript, made with JSweet on
its online platform[17] to obtain the corresponding JavaScript
file for each test case. For specific examples demonstrating

Semantic conflict detection via dynamic analysis

the transpilation result, refer to the test_cases sub-directory
within the solution repository [19].

By default, when the Java class has a static main method,
the JavaScript code produced already contains the invoca-
tion of the corresponding main function, which is essential
for the dynamic analysis to actually go through the target
instructions of the case to be tested. Given this demand, for
classes that did not have the static main method, they were
explicitly added by the authors. Out of 71 Java class files, 2
are categorized as divergences (in behavior) resulting from
transpilation: one resulted in JavaScript code with problems
due to execution errors and initialization values, while an-
other error was caused by importing non-native language
functions that could not be transpiled.

Additionally, the classes that implement each test case also
contain annotations in the form of Java comments that indi-
cate which statements or lines are changes from the branch
Left or Right of a supposed merge. With these annotations
and the corresponding JavaScript file in hand, the equivalent
mapping for the transpiled code was manually generated for
each case into a JSON file whose keys represent modified or
added lines and the values represent the branches.

Finally, after obtaining the translated scripts and the map
of changes per branch, we start a conceptual verification
of the expected result for each test case, considering the
definition of OA used in this research. Out of 69 cases without
transpilation errors, 14 showed conceptual divergence, while
11 of them were related to the related work considering as a
combined state the array elements or object fields and their
referencing elements (without treating them as independent
state components). The expected result is adapted only if
there is conceptual divergence to ultimately be used in the
final test suite implemented with Jest framework, whose
responsibility is to perform our dynamic analysis on each
script that represents a test case. All resulting artifacts are
available in the [19] solution repository.

Table 1 describes the results achieved with this test-based
evaluation strategy. For all analyzed cases, mainly on the 55
that were not subjected to any adaptation, the implemented
analysis correctly indicated the presence or absence of over-
riding assignments.

Table 1. Results obtained with test cases on the overriding
assignment algorithm

Transpilation status | No. of test cases | Precision
Transpilation divergence 2 -
Conceptually adapted 14 100%
Success 55 100%

4.2 Empirical Evaluation

The second adopted strategy to evaluate the dynamic anal-
ysis for detecting potential semantic conflicts due to over-
riding assignments consists of an empirical study to detect

SBLP 2024, September 2024, Curitiba, Parana, BR

interferences in merge scenarios extracted from open source
projects that use JavaScript as the main programming lan-
guage. The steps followed for the proposed evaluation are
represented in Figure 4. We describe below the methodology,
the obtained results and the average runtime overhead of
the evaluated samples.

project merge ancestor modified parent ..

N Mining commit commit file commit1
projects.csv Fra
XOOKX X0000KX XX00000K input filejs 000000 ...
Check modified File has changes
lines from merge from both merge
branches commits branches?
Yes
Temporary paren‘:;row LINE_TO_PARENT_MAP.json
[D Run Jalangi2
process with OA
analysis

Clone, checkout and
install dependencies

input_file.js
Figure 4. Steps and artifacts of the empirical study to eval-
uate the solution in merge scenarios extracted from open
source projects

4.2.1 Collecting Data. Initially, the projects’ list made
available by Tavares et al. [29] was reused for this study
as they presented 50 GitHub repositories with JavaScript
code that were selected according to popularity, activity, and
preferably using version 5 of ECMAScript; Jalangi2 frame-
work only ensures full support up to ECMAScript 5.1 speci-
fication features.

With the defined list of repositories (projects.csv in Figure
4), it is provided as input for the MiningFramework [13] to
extract samples of modified files from the projects 3-way
merge commits. The tool then outputs a table where each
row represents one modified file path from some of the mined
merges along with their parents commits and ancestor com-
mit. Therefore, an additional step in the process of Figure
4 checks whether each reported sample has lines modified
by both Left and Right for the given merge scenario and file,
otherwise it can be discarded from the dataset. This step out-
puts the mapping between lines and branches considering
the post-merge file state. This way we ensure our overriding
assignment analysis will be performed assuming the correct
modified line ranges of files containing possibly interfering
changes. However, we do not make any further processing
over each sample file, so we cannot ensure they will run suc-
cessfully as an individual script, nor that they have sufficient
code coverage to have their instructions executed.

Finally, with the extracted scenarios and merge metadata
available, every sample is post-processed to generate a tem-
porary JSON artifact that maps the file’s modified lines to
each branch of the corresponding merge (Left or Right), as
shown in Figure 4. After this, we clone the GitHub repository,

SBLP 2024, September 2024, Curitiba, Parana, BR

check out to the desired commit and install the dependen-
cies (assuming it is a Node.js project with a package.json file).
Finally, the resulting script is provided as input, along with
the lines-to-branches mapping path as an extra parameter,
to a Node.js process that executes the proposed OA analysis.

We achieved a dataset consisting of 452 cases, from which
293 could not be analyzed due to execution errors, leaving
then 159 samples executed (65%). In order to evaluate the
solution, the 159 scenarios will be considered the base total
set, of which 1 had an overriding assignment event detected
by our dynamic analysis, see Figure 5. Both the input dataset
and their associated outputs are available at the solution
implementation repository [19].

1 overriding assignment

159

452 successful executions
158 with no events
executable

scenarios
293

execution errors

Figure 5. Distribution of projects samples by OA analysis
execution result

4.2.2 Results. The implemented OA dynamic analysis iden-
tified 1 positive case for an overriding assignment situation
which represents a semantic conflict. Hence, there are no
false positives to be discussed. The only and true positive case
occurred in the Nightmare project (merge commit 3713f3db,
with the modified file lib/actions.js) 2. Figures 6 (line 100) and
7 (line 226) show that Left and Right added an assignment
to the same state element (inject attribute of the exports
object) at different locations in the file (the commits 9f5ffa73
and 786f978 are associated to Left and Right changes on those
assignments, they occurred between the mentioned merge
commit and their common ancestor). Because the branch
Left will have the inject function definition discarded due
to the addition made by Right in a further line to define the
same variable as a different function, it causes that element
of state to dynamically assume a non expected value by at
least one of the merged branches after their integration.

The negative cases represent the major 158 samples from
our total set of modified files originated from merge sce-
narios. To better understand their results, because we do
not have a labeled set of samples, we implemented an extra
dynamic assignment analysis decoupled from branches: to
check how many program state elements (or targets) were as-
signed more than once along the file execution (counting up
to 5 targets), regardless of which assignments were impacted
by merge contributions.

The results show that 132 out of 159 samples (representing
83% of the obtained negative cases) did not contain any target
assigned more than once during script execution. Hence,

2 Available at:
boneyard/nightmare/commit/3713...

https://github.com/segment-

Amanda Moraes, Paulo Borba, and Léuson Da Silva

n (typ:
file

1= "css"){
file type in .inject()');

startTag
endTag

g ent(fu
r injectedContents = le);
self.page.setConten + startTag + injectedContents + endTag, null, done);

Figure 6. Code snippet modified by commit 9f5ffa73 from
branch Left of merge commit 3713f3dbd from the Nightmare
project

injectedContents + endTag, null, done

Figure 7. Code snippet modified by commit 786978 from
Right branch of merge commit 3713f3dbd from the Nightmare
project

Interference detected on 5_inject:
Branch L at (.../Nightmare/lib/actions.js:100:1:120:2)
Branch R at (.../Nightmare/lib/actions.js:226:1:240:2)

Figure 8. Description of interference detected by OA analy-
sis

they can be considered true negatives for our OA analysis
as an overriding assignment scenario requires at least one
write operation from both Left and Right branches to the
same state element. The remaining 27 cases (from which
1 is our true positive), presented at least one overwritten
target, which makes an overriding assignment possible, but
not guaranteed, as it depends on the changes applied by Left
and Right to truly represent interfering contributions and be
characterized as such.

A summary of the overall results achieved on the 159 suc-
cessfully executed samples for our empirical evaluation is
represented in Figure 9. The 100% rate of positives correctly
identified and minimum 83% of true negative cases tell us
that we actually had a total of 27 samples that could possibly
contain overriding assignments, from which 1 (3,7%) was
correctly detected by the proposed solution and the remain-
ing 26 were not verified but pointed as negative cases for
OA.

4.2.3 Runtime Overhead. In our study, we also evaluated
the execution time overhead of the OA dynamic analysis for
the 159 successfully executed samples from previous section
on a standardized cloud computing environment, as a mean

https://github.com/segment\protect \discretionary {\char \hyphenchar \font }{}{}boneyard/nightmare/commit/3713f3db#diff\protect \discretionary {\char \hyphenchar \font }{}{}ccec8a6cd159a
https://github.com/segment\protect \discretionary {\char \hyphenchar \font }{}{}boneyard/nightmare/commit/3713f3db#diff\protect \discretionary {\char \hyphenchar \font }{}{}ccec8a6cd159a

Semantic conflict detection via dynamic analysis

1 overriding assignment 1 true positive

(positives) (100%)
159 132 true negatives
successful executions (83%)

158 with no events

(negatives) e
26 non-verified

(negatives)

Figure 9. Distribution of successfully executed projects sam-
ples by OA analysis result

of assessing the solution performance under reproducible
deployment conditions. The featured specification for the
environment included three Amazon EC2 instances of type
t2.large, 8 GiB of RAM, equipped with 2 vCPUs and Ubuntu
24.04 amd64 as operational system. In each instance, we
recorded the elapsed execution time across the mentioned
dataset for each of the following categories separately: the
original JavaScript file; the instrumented script made by
Jalangi2 (only with its native analyses); and finally, the in-
strumented script with the proposed OA analysis (for the
last two we do not consider the time elapsed for instrumen-
tation).

The average execution time of the 3 listed modalities on
the dataset is shown in Figure 10. The original scripts exhibit
the lowest average execution time (91 ms), followed by the
instrumented version (97 ms) and finally the OA custom
analysis (132 ms). Figure 11 shows the distribution of the OA
analysis relative overhead for the 159 executed samples, with
a median of 164,5% increase in execution time and average
172% (55% of interquartile range). Given this value, we also
analyzed the intermediate instrumentation version overhead:
Figure 11 shows that it represents the major time increase
over the original scripts, with a median of 103,5%, while
our OA analysis has a median relative overhead of only 34%
compared to the instrumented version.

To summarize, in most cases (75%) the applied dynamic
analysis framework combined with the OA custom analy-
sis remained in the range that at least doubles the original
execution time without tripling it.

Average Execution Time (s)

0.04
0.02
0.00

Original Instrumented Custom analysis on instrumented

Figure 10. Average execution time for: the original script;
its instrumented version; its instrumented version with the
proposed custom dynamic analysis

SBLP 2024, September 2024, Curitiba, Parana, BR

w oa
g 8
s 3

-

N
S
8

Relative Overhead (%)

100

OA analysis over original script

Relative Overhead (%)

I

Instrumented over original script

OA analysis over instrumented script

Figure 11. Relative time overhead distribution

5 Discussion

The results achieved with the evaluation of the overriding
assignment dynamic analysis based on test cases reinforce
the algorithm reliability to detect OA scenarios according
to its adopted conceptual definition. The proposed imple-
mentation, hence, serves as a pilot for the inclusion of more
algorithms that represent semantic interferences in code
integration scenarios.

Moreover, the empirical study on real merge scenarios
proves the potential for detecting semantic conflicts through
the dynamic detection of overriding assignments, as results
show that we have correctly detected the 1 positive sample
for OA, out of a total of 27 possibly containing it - from
Section 4.2.2, we can tell that the major part of our nega-
tive cases are actually true negatives as they did not contain
any overriden target during execution. Also, the proposed
analysis has limited complexity (coupled to the the original
program) and overall impact represented by an average exe-
cution time increase of 172%, making it suitable to be applied
in real code integration pipelines.

Considering the negative rate for OA over the 159 total
executions (99%), some of the possible reasons why they rep-
resent the majority of samples is that our dynamic analysis
is restricted to what is actually invoked in their containing
program. Hence, there might be cases where there are little
or no instructions being exercised when running their files
as input. This scenario reinforce the potential for improving
the tool positive rate through the adoption of techniques
that are capable of increasing the invoked portion of code
given an input script that is possibly not ready to be an entry
point. Such an approach, if applied, would still detect inter-
ferences dynamically, while it would also take advantage
of manipulating the under analysis code to traverse more
instructions possibly containing semantic conflicts.

SBLP 2024, September 2024, Curitiba, Parana, BR

6 Threats to Validity

Internal Validity. When proposing the overriding as-
signment interference detection via dynamic analysis on
JavaScript code, not only the target programming language
is a novelty in the field of semantic conflict detection, but the
adopted dynamic analysis framework too. As mentioned in
Section 4.2.1, Jalangi2 presents a restriction: it provides full
support for ECMAScript versions up to 5.1, and may support
some ECMAScript 6 features. As a way of addressing this
limitation, we employed a chronological filter (using the ES6
launch year, 2015, as the upper limit) on the mined merge
scenarios in Section 4.2.1. This way, we could assess a better
successful execution rate to focus on the analysis results.

Another limitation comes from the proposed algorithm
evaluation method, which is based on test cases originally
implemented to evaluate overriding assignment detection
in Java classes methods. Considering they had to be tran-
spiled to JavaScript programs, we standardized the process
by applying a third party tool [17], leaving only the lines-to-
branch mapping process as a manual step.

External Validity. Along with the OA analysis, we also
propose a new dataset of open source JavaScript merge sce-
narios. Because we depend on runtime events to potentially
detect an interference, the evaluation of our solution is hence
restricted to the diversity of the collected scenarios as well
as to the presence of entry point or individually executable
files into them. Additionally, the dataset is not labeled ac-
cording to our definition of semantic conflicts and overriding
assignments, but was made available to ensure the study is
reproducible and open to future enhancements.

7 Related Work

The dynamic semantic conflicts treated in this study are
based on the definition and concept of interference intro-
duced by Horwitz et al. [15], who proposed a formal tech-
nique for integrating states of a code without them interfer-
ing with each other through the evaluation of differences
between their versions. However, along with other works
[24][23], approaches based on static techniques and com-
plex structures are applied, such as program slicing and Pro-
gram Dependence Graphs. In the current work, the approach
adopted is dynamic, and the complexity is coupled to the
complexity of the code, in addition to only one version being
used to identify interfering contribution with its execution.

Nguyen et al. [20] initially focused on exploring conflicts
that occur in plugin-based systems and proposed the Varex,
a tool to detect them with the variability-aware technique.
The same technique was proposed by Nguyen et al. [21],
but for detecting merge semantic conflicts with the Semex
tool. Semex uses variability-aware execution of tests on a file
that is the combination of contributions from the branches
of a potential merge by inserting conditional blocks into it.
Similar to this work, Semex performs a dynamic analysis,

Amanda Moraes, Paulo Borba, and Léuson Da Silva

but in return it intervenes in the control flow of the source
code and uses existing tests in the projects to execute and
detect possible interferences.

Still in the context of semantic conflicts, Da Silva et al. [6]
also proposed the detection of interference between versions
of a code integration scenario dynamically. From the gen-
eration of unit tests, a comparison of results is carried out
with their execution to identify changes in behavior across
all commits related to a 3-way merge scenario. In addition
to being a test-based solution, the work proposes executing
more than one version of the code, while in this study, only
the merge commit version is executed.

Finally Santos et al. [26] defined algorithms that charac-
terize interferences, such as overriding assignment, but for
Java code. Barbosa et al. [2] specifically proposed static OA
analysis for Java classes with two approaches: intraproce-
dural and interprocedural. The defined algorithm was the
main reference for implementing the dynamic analysis of
this study, which resulted in an interprocedural adaptation
to run on JavaScript code.

8 Conclusions

The dynamic analysis of overriding assignment presented
in this research corresponds to a tool capable of detecting
unplanned interference between contributions integrated
into a program. Our approach had its algorithm verified with
tens of test cases adapted from related literature, and its
evaluation on real integration scenarios extracted from open
source projects detected only true positives while resulted
in a minimum of 85% true negative rate. As this analysis
occurs at runtime, its positive rate can be expanded in future
work with approaches that intervene in the source code
to help more instructions defined in the input script to be
actually executed and analyzed. In order to achieve this goal,
applying fuzzers to insert invokes and reusing parameters
or tests from the repositories where the merge took place
are techniques that might be adopted. Extending the tool
with algorithms beyond detecting overriding assignment is
also expected, so the analyses will cover more patterns of
unplanned interference between developers.

Finally, given its dynamic behavior, positive performance,
and limited complexity, the solution also has the potential
for being applied into integration pipelines or integration
proposals in code repositories as a mean to actively anticipate
the conflicts and reduce the impact of behavioral interfering
changes during collaborative software development.

9 Acknowledgements

We would like to thank INES (National Software Engineering
Institute) and the Brazilian research funding agencies CNPq
(grant 309235/ 2021-9), FACEPE (grants IBPG-0546-1.03/15
and APQ/0388-1.03/14), and CAPES for partially supporting
this work.

Semantic conflict detection via dynamic analysis

References

(1]

—
Do
—

(10]

(11

—

(12]

(13]

(14]

(15]

[16]

(17]
(18]

(19]

[20]

Paola Accioly, Paulo Borba, and Guilherme Cavalcanti. 2018. Under-
standing semi-structured merge conflict characteristics in open-source
java projects. Empirical Software Engineering 23 (2018), 2051-2085.
Matheus Barbosa, Paulo Borba, Rodrigo Bonifacio, and Galileu Santos.
2022. Semantic conflict detection with overriding assignment analysis.
SBES 2022: XXXVI Brazilian Symposium on Software Engineering (2022).
Yuriy Brun, Reid Holmes, Michael D Ernst, and David Notkin. 2013.
Early detection of collaboration conflicts and risks. IEEE Transactions
on Software Engineering 39, 10 (2013), 1358-1375.

Reidar Conradi and Bernhard Westfechtel. 1998. Version models for
software configuration management. ACM Computing Surveys (CSUR)
30, 2 (1998), 232-282.

Léuson Da Silva, Paulo Borba, Toni Maciel, Wardah Mahmood,
Thorsten Berger, Jodo Moisakis, Aldiberg Gomes, and Vinicius Leite.
2024. Detecting semantic conflicts with unit tests. Journal of Systems
and Software (2024), 112070.

Léuson Da Silva, Paulo Borba, Wardah Mahmood, and Thorsten Berger.
2020. Detecting Semantic Conflicts via Automated Behavior Change
Detection. IEEE International Conference on Software Maintenance and
Evolution (ICSME) (2020). https://doi.org/10.1109/ICSME46990.2020.
00026

Léuson Da Silva, Paulo Borba, and Arthur Pires. 2022. Build conflicts
in the wild. Journal of Software: Evolution and Process 34, 4 (2022),
e2441.

GitHub Docs. 2024. Resolver um conflito de merge usando a linha de
comando. https://docs.github.com/pt/pull-requests/collaborating-
with-pull-requests/addressing-merge-conflicts/resolving-a-merge-
conflict-using-the-command-line

Open]JS Foundation. [n.d.]. Node.js — Run JavaScript Everywhere.
https://nodejs.org/en

Git. 2024. Branches no Git - O basico de Ramificacido (Branch) e
Mesclagem (Merge). https://git-scm.com/book/pt-br/v2/Branches-
no-Git-0-b%C3%A1sico-de-Ramifica%C3%A7%C3%A30-Branch-e-
Mesclagem-Merge

Git. 2024. Resolver um conflito de merge usando a linha de comando.
GitHub. https://git-scm.com/

Innovation Graph. 2024. Programming Languages Global Metrics.
https://innovationgraph.github.com/global-metrics/programming-
languages

Software Productivity Group. [n.d.]. MiningFramework. GitHub.
https://github.com/spgroup/miningframework

Software Productivity Group. [n.d.]. Static Analyses Algo-
rithms for Detecting Semantic Conflicts. GitHub. https:
//github.com/spgroup/conflict-static-analysis/tree/2f481eb58b/
src/test/java/br/unb/cic/analysis/samples/ioa

Susan Horwitz, Jan Prins, and Thomas Reps. 1989. Integrating Nonin-
terfering Versions of Programs. ACM Transactions on Programming
Languages and Systems 11, 3 (1989), 345-387.

Free Software Foundation Inc. 2022. Merging From a Common Ances-
tor. https://www.gnu.org/software/diffutils/manual/html_node/diff3-
Merging.html

JSweet. [n.d.]. JSweet Live Sandbox: write Java, run JavaScript. https:
//www.jsweet.org/jsweet-live-sandbox/

Jayadev Misra. 2001. A Discipline of Multiprogramming: Programming
Theory for Distributed Applications. Springer. 14 pages.

Amanda Moraes. [n.d.]. Dynamic Analysis for detecting overrid-
ing assignments in JavaScript code. GitHub. https://github.com/
amandascm/SCAzjs

Hung Viet Nguyen, Christian Kastner, and Tien Nhut Nguyen. 2014.
Exploring Variability-Aware Execution for Testing Plugin-Based Web
Applications. In Proceedings of the 36th International Conference on
Software Engineering. ICSE 2014, 907-918.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

SBLP 2024, September 2024, Curitiba, Parana, BR

Hung Viet Nguyen, My Huu Nguyen, Soncuu Dang, Christian Kastner,
and Tien Nhut Nguyen. 2015. Detecting semantic merge conflicts
with variability-aware execution. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering. ESEC/FSE 2015, 926—
929.

Delano Oliveira, Reydne Bruno, Fernanda Madeiral, and Fernando
Castor. 2020. Evaluating code readability and legibility: An examina-
tion of human-centric studies. In 2020 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 348-359.
Thomas W Reps and Susan Horwitz. 1992. The use of program de-
pendence graphs in software engineering. ICSE *92: Proceedings of the
14th international conference on Software engineering (1992), 392-411.
Thomas W Reps, Susan Horwitz, and Dave Binkley. 1988. Interpro-
cedural slicing using dependence graphs. In ACM SIGPLAN Notices,
Vol. 23. ACM, 35-46.

Samsung. [n.d.]. Jalangi2. GitHub. https://github.com/Samsung/
jalangi2

Galileu Santos, Paulo Borba, Rodrigo Bonifacio, and Matheus Bar-
bosa de Oliveira. 2023. Detecting Semantic Conflicts using Static
Analysis. arXiv:2310.04269 [cs.SE] (2023).

Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs.
2013. Jalangi: A Selective Record-Replay and Dynamic Analysis Frame-
work for JavaScript. In ESEC/FSE 2013: Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering. ACM, 488-498.
https://doi.org/10.1145/2491411.2491447

Daniela Steidl, Benjamin Hummel, and Elmar Juergens. 2013. Quality
analysis of source code comments. In 2013 21st international conference
on program comprehension (icpc). leee, 83-92.

Alberto Tavares, Paulo Borba, Guilherme Cavalcanti, and Sérgio Soares.
2019. Semistructured Merge in JavaScript Systems. In 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2019).
1014-1025.

Junji Zhi, Vahid Garousi-Yusifoglu, Bo Sun, Golara Garousi, Shawn
Shahnewaz, and Guenther Ruhe. 2015. Cost, benefits and quality of
software development documentation: A systematic mapping. Journal
of Systems and Software 99 (2015), 175-198.

https://doi.org/10.1109/ICSME46990.2020.00026
https://doi.org/10.1109/ICSME46990.2020.00026
https://docs.github.com/pt/pull-requests/collaborating-with-pull-requests/addressing-merge-conflicts/resolving-a-merge-conflict-using-the-command-line
https://docs.github.com/pt/pull-requests/collaborating-with-pull-requests/addressing-merge-conflicts/resolving-a-merge-conflict-using-the-command-line
https://docs.github.com/pt/pull-requests/collaborating-with-pull-requests/addressing-merge-conflicts/resolving-a-merge-conflict-using-the-command-line
https://nodejs.org/en
https://git-scm.com/book/pt-br/v2/Branches-no-Git-O-b%C3%A1sico-de-Ramifica%C3%A7%C3%A3o-Branch-e-Mesclagem-Merge
https://git-scm.com/book/pt-br/v2/Branches-no-Git-O-b%C3%A1sico-de-Ramifica%C3%A7%C3%A3o-Branch-e-Mesclagem-Merge
https://git-scm.com/book/pt-br/v2/Branches-no-Git-O-b%C3%A1sico-de-Ramifica%C3%A7%C3%A3o-Branch-e-Mesclagem-Merge
https://git-scm.com/
https://innovationgraph.github.com/global-metrics/programming-languages
https://innovationgraph.github.com/global-metrics/programming-languages
https://github.com/spgroup/miningframework
https://github.com/spgroup/conflict-static-analysis/tree/2f481eb58b/src/test/java/br/unb/cic/analysis/samples/ioa
https://github.com/spgroup/conflict-static-analysis/tree/2f481eb58b/src/test/java/br/unb/cic/analysis/samples/ioa
https://github.com/spgroup/conflict-static-analysis/tree/2f481eb58b/src/test/java/br/unb/cic/analysis/samples/ioa
https://www.gnu.org/software/diffutils/manual/html_node/diff3-Merging.html
https://www.gnu.org/software/diffutils/manual/html_node/diff3-Merging.html
https://www.jsweet.org/jsweet-live-sandbox/
https://www.jsweet.org/jsweet-live-sandbox/
https://github.com/amandascm/SCAz.js
https://github.com/amandascm/SCAz.js
https://github.com/Samsung/jalangi2
https://github.com/Samsung/jalangi2
https://doi.org/10.1145/2491411.2491447

	Abstract
	1 Introduction
	2 Concepts and Motivation
	3 Detecting Interference Using Dynamic Analysis
	3.1 Dynamic Analysis
	3.2 Algorithm

	4 Evaluation and Results
	4.1 State Of The Art Evaluation
	4.2 Empirical Evaluation

	5 Discussion
	6 Threats to Validity
	7 Related Work
	8 Conclusions
	9 Acknowledgements
	References

