
Semantic conflict detection via
dynamic analysis

Amanda Moraes
CIn - UFPE

Paulo Borba
CIn - UFPE

Léuson Da Silva
Polytechnique Montreal Canada



The software 
development 
process is strongly 
collaborative



Existing tools can make 
code integration easier
Like Git, for version control, parallel 
development and branch merging

Textual 
merge 
conflict



b = 0 b = 1

b = 1

What happens when the 
changes don't happen 
on the same line?
(or on consecutive lines)





Semantic conflict 
(behavioral) 
When the merge of contributions from 2 developers 
results in unplanned behavior when compared to the 
behavior of the versions that originated it

Behavior ~ specifications

Unplanned behavior ~ Interference



Overriding Assignment
occurs when additions or modifications to one 
of the merge branches involve writing to a 
state element that is also associated with a 
write operation due to the contribution of the 
other branch



Overriding Assignment
occurs when additions or modifications to one 
of the merge branches involve writing to a 
state element that is also associated with a 
write operation due to the contribution of the 
other branch



[...] involve writing to a state element



[...] involve writing to a state element



Due to overriding 
assignments



Due to overriding 
assignments

Why and how ?



Related work

Static Analysis

Unit Test Generation
Run on each version of merge; 
potential increase of false 
negatives

Conservative; Potential drop in 
accuracy



Static Analysis

Unit Test Generation
Run on each version of merge; 
potential increase of false 
negatives

Conservative; Potential drop in 
accuracy

Related work



Related work

Static Analysis

Unit Test Generation
Run on each version of merge; 
potential increase of false 
negatives

Conservative; Potential drop in 
accuracy



Available resources

Dynamic Analysis

Does not demand assertions 
about the program

It is only executed on 
the post-merge code

Occurs at runtime



Jalangi2 Analysis



Custom OA Analysis







Left assignments Right assignments

Interferences

Function call stack



Left assignments Right assignments

Interferences

Function call stack



Left assignments Right assignments

Interferences

Function call stack



Left assignments Right assignments

Interferences

Function call stack



Left assignments Right assignments

Interferences

Function call stack



Left assignments Right assignments

Interferences

Function call stack



Left assignments Right assignments

Interferences

Function call stack

b



Left assignments Right assignments

Interferences

Function call stack

b



Left assignments Right assignments

Interferences

Function call stack

b



Left assignments Right assignments

Interferences

Function call stack

b



Left assignments Right assignments

Interferences

Function call stack

b



Left assignments Right assignments

Interferences

Function call stack

b

func1



Left assignments Right assignments

Interferences

Function call stack

b

func1



Left assignments Right assignments

Interferences

Function call stack

b

func1



Left assignments Right assignments

Interferences

Function call stack

b

func1

b



Left assignments Right assignments

Interferences

Function call stack

b

func1

b



Left assignments Right assignments

Interferences

Function call stack

b

func1

b

b (L:54; R:56,50)



Left assignments Right assignments

Interferences

Function call stack

func1

b

b (L:54; R:56,50)



Left assignments Right assignments

Interferences

Function call stack

func1

b

b (L:54; R:56,50)



Left assignments Right assignments

Interferences

Function call stack

b

b (L:54; R:56,50)



Left assignments Right assignments

Interferences

Function call stack

b

b (L:54; R:56,50)



Left assignments Right assignments

Interferences

Function call stack

b

b (L:54; R:56,50)





Evaluation & Results

Correctness
With test cases

Capacity
With third party merges

Overhead
On execution time



Evaluation & Results

Correctness
With test cases

Capacity
With third party merges

Overhead
On execution time









Test Results 
In translated validation scenarios

Transpilation Result Amount of tests Success Rate

TRANSPILATION_DIVERGENCE 2 -

CONCEPTUALLY_ADAPTED 14 100%

SUCCESS 55 100%



Evaluation & Results

Correctness
With test cases

Capacity
With third party merges

Overhead
On execution time



50 projects



~65%

Results
In open source merge scenarios

~35%



~1%

~99%



~1%

~99%



~99%Why?
With no OA



~99%Why?
With no OA

iniciarProcesso()

aumentarContador()



With an additional overriding 
assignment analysis, this time 
disregarding branches or 
whether it was modified,

83% of 159 scenarios showed no 
override of any state element

~99%Why?
With no OA



~99%Why?
With no OA

With an additional overriding 
assignment analysis, this time 
disregarding branches or 
whether it was modified,

83% of 159 scenarios showed no 
override of any state element

83% true 

negatives



~1%

~99%



100% de positivos verdadeiros
Apenas 1 positivo, que é verdadeiro



Evaluation & Results

Correctness
With test cases

Capacity
With third party merges

Overhead
On execution time



Average 

44% increase

Average 94% 

increase

Overhead 
analysis
The native Jalangi2 
instrumentation and 
analyses represent the 
major overhead

Total avg 
172%



Average 

44% increase

Average 94% 

increase

Overhead 
analysis
The native Jalangi2 
instrumentation and 
analyses represent the 
major overhead

Total avg 
172%



Correctness

Reliable implementation of 
OA detection algorithm

Capacity

We were able to detect an 
overriding assignment

Overhead

Complexity coupled to the 
original, major overhead 

comes from the framework



More algorithms to detect 
conflicts beyond OA

In the future…



More algorithms to detect 
conflicts beyond OA

In the future…

Plug the solution into code 
integration pipelines



Fuzzers, generating tests without 
assertions, or reusing parameters present in 
tests from the repositories

Expand analysis action 
on scripts instructions



Thank you!

Amanda Moraes
CIn - UFPE - ascm@cin.ufpe.br

Paulo Borba
CIn - UFPE - phmb@cin.ufpe.br

Léuson Da Silva
Polytechnique Montreal Canada - 
leuson-mario-pedro.da-silva@polymtl.ca


