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ABSTRACT

Version control system tools empower developers to independently
work on their development tasks. These tools also facilitate the inte-
gration of changes through merging operations, and report textual
conflicts. However, during the integration of changes, developers
might encounter other types of conflicts that are not detected by
current merge tools. In this paper, we focus on dynamic semantic
conflicts, which occur when merging reports no textual conflicts
but results in undesired interference—causing unexpected program
behavior at runtime. To address this issue, we propose a technique
that explores the use of static analysis to detect interference when
merging contributions from two developers. We evaluate our tech-
nique using a dataset of 99 experimental units extracted from merge
scenarios. The results provide evidence that our technique presents
significant interference detection capability (F1 Score of 0.50 and
Accuracy of 0.60).
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1 INTRODUCTION AND MOTIVATION

Textual (line-based) merge tools identify conflicts when merging
code versions that modify the same or consecutive lines. While
these conflicts are common and well-studied, they represent just one
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aspect of the challenges that may arise when integrating code from
two developers. As textual merge tools focus simply on combining
lines, they aren’t able to detect incompatible changes that occur in
areas of the code separated by at least a single line.

For instance, textual merge tools also can’t detect dynamic se-
mantic conflict [1, 3, 4, 6,7, 9-11] , that happens, for instance, when
the changes made by one developer affect a state element that is
accessed by code changed by another developer, who assumed a
state invariant that no longer holds after merging. In such cases,
textual integration is automatically performed generating a merged
program, a build is created with success for this program, but its
execution reveals unexpected behavior. Following Horwitz et al. [6],
we put this more formally by considering dynamic semantic con-
flicts as undesired interference. Interference is defined as follows:
separate changes L and R to a base program B interfere when the
integrated changes do not preserve the altered behavior of L or R,
or the unchanged behavior of B.

As dynamic semantic conflicts, hereafter simply semantic con-
flicts, can negatively impact development productivity and the
quality of software products, researchers [4, 6, 9] have proposed
techniques to detect them. In fact, as developer’s desire (specifica-
tion) is hard to capture and is often not available for automated
tools, these techniques simply try to detect interference. The tech-
niques based on theorem proving [9] and static analysis with system
dependence graphs (SDGs) [1, 2] are computationally expensive. Al-
though an existing technique based on testing [4] has been proven
less expensive, it suffers from low recall.

These limitations motivate us to explore lightweight static anal-
yses algorithms for approximating interference when merging
changes made by two developers. We conduct an experiment to un-
derstand how accurate and computationally efficient our analyses are
for detecting interference. The results show that our analyses have
significant interference detection capability, but with potentially
significant costs for handling false positives (analysis incorrectly
reports interference). In this extended abstract, we briefly introduce
the static analysis algorithms and partially detail the results of our
experiment.

2 STATIC ANALYSIS ALGORITHMS

We propose a technique that runs static analyses algorithms on
the merged version of the code, which we annotate with metadata
indicating instructions modified or added by each developer. For
each of the four analyses enumerate below, we implemented the
algorithms targeting the Java programming language and took
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advantage of the Soot framework as the underlining infrastructure
for Java program analyses.

o Interprocedural Data Flow (DF: def-use relationships in-
volving Left and Right contributions as Data Flow (DF).

¢ Interprocedural Confluence (CF): Interference can also
occur when there is no data flow between the integrated
changes, but there are data flows from the integrated changes
to a common statement.

o Interprocedural Override Assignment (OA): we capture
situations where state elements updates from one developer
are overridden by the other.

e Program Dependence Graph (PDG): our implementation
was based on the work of [5, 6]. Deals with situations where
a contribution from a developer introduces a new control-
flow dependency with a statement that another developer
contributes to.

Two analyses, OA and CF, were specifically tailored to inter-
ference detection in code merging. DF, though based on an SVFA
implementation, includes adaptations required for interference de-
tection. Our implementation incorporates new flows to statements
such as conditionals and returns, which are not considered by SVFA
(and doesn’t make sense for standard data flow analysis), but are
necessary for detecting interference. PDG has nothing new, we
simply apply it for semantic conflict detection.

3 EMPIRICAL ASSESSMENT

We start with open-source Java projects from GitHub. We rely on a
number of Java projects and scenarios that appeared in previous
studies on semantic merge conflicts: 35 units from [8], 31 from [1],
and 30 from [9].

Together with the three new units that first appear in this work,
we have a total of 99 experimental units, associated with 54 merge
scenarios extracted from 39 projects. At least two researchers manu-
ally analyze each unit and check for interference using the definition
and conditions that imply interference [6]. We use the results of
this analysis to build a ground truth.!

For each scenario in our dataset, we build the merge commit
version and generate a JAR file without external project depen-
dencies. We then run the algorithms we implemented to detect
interference. Finally, we compare the interference ground truth
with the logical disjunction of the analyses results, and compute
precision, recall, F1, and accuracy metrics. We also summarize and
analyze the execution time information in a number of ways.

We depict the confusion matrix of our experiment in Table 1,
which shows that our sample contains 33 units with interference,
and 66 without interference. The logical disjunction of our analyses
results reports 26 (26.2%) false positives (incorrectly predicted inter-
ference) and 13 (13.1%) false negatives (non reported interference),
resulting in a F1 Score of 0.50 and an Accuracy of 0.60.

IThere is a state element x such that Base, Left, and Right compute different values for
x; Left (or Right) computes a different value for x compared to both the Base program
and the merged version; or Base, Left, and Right compute the same value for x, but the
merged version computes a different value.
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Actual
Positive | Negative | Total
Positive 20 26 46
Predicted
Tediete® | Negative 13 40 53
Total 33 66 99

Table 1: Confusion matrix.
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Figure 1: Summary of the analyses execution time

We carry out our experiments using an Ubuntu docker container
running on an Intel Xeon Gold 6338 server with 2Tb of RAM, as
we run our four analysis 10 times for each unit. Variation across
the 10 executions is small, with standard deviation ranging from
0.04s (in a scenario with 11.74s average) to 11.74s (in a scenario
with 340.45s average). The median is at 17.8s for executing together
the four analyses, including their setup, call graph construction,
interference checking, and result reporting (see Figure 1).

4 CONCLUSIONS

We present a technique and a set of static analyses that show signif-
icant interference detection capability, and potential for detecting
dynamic semantic conflicts. It comes, though, with potentially sig-
nificant costs for handling false positives. Comparing with previous
work [1, 8, 9], our technique shows much better F1 score and re-
call than the dynamic analysis technique, but with much worse
precision. Our precision is comparable to the ones presented by
the SDG and theorem proving techniques. The performance re-
sults show that our analyses should have much better performance
than previous techniques. In summary, besides existing limitations,
our experience suggests that our technique is feasible, and might
complement dynamic analysis alternatives that aim to detect inter-
ference.
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