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a b s t r a c t 

Software Product Lines allow the automatic generation of related products built with reusable artefacts. 

In this context, developers may need to perform changes and check whether products are affected. A 

strategy to perform such analysis is verifying behaviour preservation through the use of formal theories. 

The product line refinement notion requires behaviour preservation for all existing products. Neverthe- 

less, in evolution scenarios like bug fixes, some products intentionally have their behaviour changed. To 

support developers in these and other unsafe scenarios, we define a theory of partial product line refine- 

ment that helps to precisely understand which products are affected by a change. This provides a kind of 

impact analysis that could, for example, reduce test effort, since only affected products need to be tested. 

We provide properties such as compositionality, which deals with changes to a specific product line ele- 

ment, and general properties to support developers when safe and partially safe scenarios are combined. 

We also define a set of transformation templates, which are classified according to their compatibility to 

specific types of product lines. To evaluate our work, we analyse two product lines: Linux and Soletta, to 

discover if our templates could be helpful in evolving these systems. 

© 2019 Elsevier Inc. All rights reserved. 
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. Introduction 

Product lines provide systematic reuse and mass customisation

or software related products ( Clements and Northrop, 2001; Pohl

t al., 2005 ). This concept brings advantages such as productivity

nd quality improvements, apart from the capacity to customise a

ystem based on customers needs. Nevertheless, there are several

hallenges in the product line development field. Due to require-

ent changes, they naturally evolve and tend to become complex

o manage. So developers face the challenge, for example, of guar-

nteeing that evolution is safe and users are not inadvertently af-

ected in an evolution scenario ( Apel et al., 2013; Pohl et al., 2005 ).

This safe evolution concept ( Neves et al., 2015 ) is formalised by

 refinement notion ( Borba et al., 2012 ) that requires every product

f the initial product line to have compatible behaviour with at

east one product of the newly evolved product line. This is useful

o support developers in making sure that the changes they make

o not have unintended impact. For instance, users might simply

eed to refactor assets, or even add optional features, and these are

uaranteed not to affect existing products, provided that certain

onditions are observed ( Borba et al., 2012; Neves et al., 2015 ). The
∗ Corresponding author. 
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efinement notion and its associated transformation templates help

s to precisely capture those conditions. 

Although these notions of product line safe evolution and re-

nement are useful in many practical evolution scenarios, they

re too demanding for other scenarios because they require be-

aviour preservation for all products. Nevertheless, we believe that

e could still support developers even when all-products con-

traint does not apply. For example, adding functionality to an as-

et changes the behaviour of all products that use that asset. How-

ver, products that do not use the modified asset should not be

ffected. So we could still provide behaviour preserving guarantees

or a proper subset of the products in the product line. 

This kind of partial guarantee can be useful as an impact anal-

sis for developers to be aware of which products are affected in

n evolution scenario. They could, for instance, avoid checking be-

aviour preservation of the refined products, focusing only on test-

ng the new functionality in the subset of products impacted by

he changes. A notion of partially safe product line evolution could

ssist developers by providing this kind of weaker, but still useful,

uarantee that covers common evolution scenarios not supported

y refinement. This concept can be helpful not only in a practical

roduct line development context, but also in building tools that

upport product line development. 

In fact, many evolution scenarios found in practice do not

haracterise refinements. Changing a top level (child of root)

eature from optional to mandatory, for example, is not refinement

https://doi.org/10.1016/j.jss.2019.04.051
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2019.04.051&domain=pdf
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because not all original products are refined. More specifically,

products that already had the changed feature preserve the same

behaviour in the new product line. However, products that did not

have the feature do not preserve behaviour because, in the new

product line, they will present the extra behaviour associated to

the changed feature. Furthermore, Passos et al. (2015) examined

commits of the Linux repository history, 1 and found that feature

removals, which are not refinements unless the feature is dead or

has void behaviour, often occur. The partially safe evolution notion

can address these cases by requiring refinement for a proper sub-

set of the product line products. Transformation templates derived

from this notion capture the context and required conditions for

a number of scenarios, and precisely provide the subset of refined

products for those cases. 

Analogously to the fact that we formalise safe evolution in

terms of a refinement notion ( Borba et al., 2012; Neves et al.,

2015 ), partially safe product line evolution is formalised in terms

of a partial refinement notion. As discussed, partially safe evolu-

tion only requires behaviour preservation for a subset of the exist-

ing products in a product line. 2 We also provide a set of properties

to support developers in partial refinement scenarios. For instance,

to justify stepwise evolution support reasoning about the set of re-

fined products after changes to a single product line element. 

For scenarios where a change is intended to refine all products,

such as changing a feature from mandatory to optional, develop-

ers should rather use the original refinement notion ( Borba et al.,

2012 ). Hence, they can choose a specific notion depending on the

situation. Evolution in practice often interleaves different kinds

of changes, ranging from refinement to partial refinement scenar-

ios. For this reason, to support practitioners, we derive properties,

including that safe and partially safe evolution transformations,

when applied in different orders, might lead to the same result-

ing product line. For example, developers could refine an asset and

then remove a feature, or apply these transformations in the op-

posite order, and still reach the same target. 

In addition, we propose transformational templates represent-

ing abstractions of recurring partial refinement situations encoun-

tered in practice. Templates work as a guide for developers. In-

stead of reasoning over refinement notions, they can use templates

by means of pattern matching, which can also be tool supported.

The partial evolution templates precisely determine which subset

of products is refined for each situation; developers might even

obtain this subset automatically. So our templates effectively pro-

vide change impact analysis. 

To evaluate the applicability of our templates, we use the FEVER

tool ( Dintzner et al., 2017 ) to automatically analyse evolution sce-

narios found among versions 3.11 and 3.16 of the Linux Kernel

repository. We also analyse commits from Soletta, 3 which is a

framework for making IoT devices. We find, in both projects, a

number of instances of most templates in the commit history of

both projects and confirm that they could have been applied, thus

reinforcing the applicability of our templates. We also formalise

the concepts and prove properties and soundness of the tem-

plates in the Prototype Verification System (PVS) theorem prover

( Owre et al., 2001. Version 2.4 ). 

In summary, with the aim of giving better support for devel-

opers in partially safe evolution scenarios, in this paper we de-

fine new properties, propose and formalise templates, and enhance

our evaluation by considering more evolution scenarios, including

those from a new product line project. We also provide proofs for
1 Linux repository is available at http://github.com/torvalds/linux . 
2 We use the “partial refinement” term to denote the new refinement notion, 

which requires refinement only for a subset of the original products in a product 

line. 
3 Soletta is available at http://github.com/solettaproject/soletta . 
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everal theorems. So this article extends our previous conference

aper ( Sampaio et al., 2016 ) in four main ways: 

• further properties: we provide compositionality properties for

asset mapping ( Section 3.2.2 ) and configuration knowledge

( Section 3.2.3 ). 
• theorem proofs: we include proofs encoded in the PVS theorem

prover. We use a more readable language than the PVS nota-

tion, but the.pvs files can be found in our appendix ( Partial re-

finement theory website ). We also discuss the structure of our

encoding ( Section 5 ). 
• template compatibility analysis: we analyse the compatibility of

our templates with existing configuration knowledge (CK) lan-

guages (compositional and transformational). A CK is compo-

sitional when features are mapped to artefacts. In the trans-

formational one, features are mapped to transformations, such

as preprocess , which provides more flexibility to the developer.

Moreover, we present templates to deal with transformational

CKs ( Section 4.2 ), going beyond the compositional ones that

had been published before. 
• deeper evaluation: we now analyse the Soletta project

( Section 6.2.2 ), another product line which aims to support

the development of IoT applications. Moreover, we extend our

Linux evaluation by providing further information regarding the

analysed scenarios ( Section 6.2.1 ). For instance, for the Change

Asset scenarios we make use of auxiliary tools to have a better

understanding of the types of changes performed by develop-

ers. 

This paper is organised as follows. In Section 2 , we present

 motivating example from the Linux repository. We introduce

he required background and the partial refinement theory in

ection 3 , relating it with the refinement theory. In Section 4 , we

resent a template catalogue. We present evaluation results and

elated work in Section 6 and Section 7 , respectively. Finally, we

onclude in Section 8 . 

. Motivating example 

To illustrate a common evolution scenario not covered by the

roduct line refinement notion, we refer to commit ae3e4c2776 4 

f the Linux repository history. It basically consists of a feature re-

oval scenario. Feature LEDS_RENESAS_TPU represents a LED driver

n the Linux system. LEDS_RENESAS_TPU was removed because

t was superseded by the preexisting generic PWM_RENESAS_TPU

river. The commit changes are illustrated in Listing 1 , 2 and 3 .

he lines in red were removed in the commit. 

In Listing 1 , we observe changes to a Linux Kconfig file, 5 which

lays a similar role to feature models and other variability mod-

ls, establishing the product line configuration space. Statements

n Kconfig declare features by indicating their names, types (the

llustrated one is a boolean that can assume y or n , when it is

elected or not, respectively) and relations with other features, as

pecified in Lines 4 and 5. In this case LEDS_RENESAS_TPU depends

n LEDS_CLASS, HAVE_CLK and GPIOLIB . Thus, the former can only

e selected if the three other features are included in the product.

n terms of feature models, this condition is akin to establishing

EDS_RENESAS_TPU as a descendant of those features. 

The LEDS_RENESAS_TPU feature is technically implemented by

he leds-renesas-tpu.o asset, as we can infer from the Makefile

apping in Listing 2 . These files represent Linux configuration

nowledge, relating feature expressions (presence conditions) to
4 Feature removal commit http://github.com/torvalds/linux/commit/ae3e4c2776 . 

ul 16, 2013; version v3.12-rc1. 
5 Kconfig language documentation https://www.kernel.org/doc/Documentation/ 

build/kconfig-language.txt . 

http://github.com/torvalds/linux
http://github.com/solettaproject/soletta
http://github.com/torvalds/linux/commit/ae3e4c2776
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
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Listing 1. drivers/leds/Kconfig. 

Listing 2. drivers/leds/Makefile. 

Listing 3. drivers/leds/leds-renesas-tpu.c. 
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(  
sset names. This mapping was removed, since the intention was

o remove the feature. However, a feature is only completely re-

oved when its implementation is deleted as well, otherwise there

ould be unused assets. Listing 3 indicates that this was actually

one; we only show part of the code of the file leds-renesas-tpu.c

or brevity, but it was removed from the repository. 

With these deletions, products that had the LEDS_RENESAS_TPU

eature present different behaviour, unless the PWM_RENESAS_TPU

eature has a compatible behaviour to the previous one, and the

roducts having the former also had the latter, but this may not be

rue. Thus, in the new product line, we likely will not find products

hat match the behaviour of a product with LEDS_RENESAS_TPU .

onsequently, this is not a safe evolution scenario; the existing

roduct line refinement theory fails to support developers in this

ase, even though we know that products not having that fea-

ure should have the same behaviour. In fact, this scenario is par-

ially safe considering the configurations corresponding to products

hat did not have LEDS_RENESAS_TPU and are, therefore, not im-

acted by its removal. Since Linux users can choose to select or

ot LEDS_RENESAS_TPU , there might be a number of products that

o not have it. If this feature were directly connected to the root,

e could give support for half of the products, which would make

he gain significant by avoiding, for instance, to test these products.

There are many other kinds of partially safe evolution scenar-

os, such as adding functionality to existing features. In these cases,

oth implementation files and the respective mappings are added

o the product line. In this scenario, products that suffer additions

o not preserve behaviour, but the evolution is partially safe as

roducts that do not have the added functionality are not affected

y the change, and thus, preserve their behaviour. The percentage

f refined products is directly proportional to the frequency of the

eatures that have not changed. If the affected feature is manda-

ory, the guarantee might be weak or even void, in case of a top

evel feature, which is included in all products. In contrast, when

he changed feature is optional and positioned just near the root

eature, for instance, the guarantee can achieve 50% of the prod-

cts, since no more than 50% of the valid products have the re-

pective feature; this percentage increases when the feature is po-
itioned lower in the three. Therefore, we believe that product line

ngineers could benefit from a notion of partially safe evolution

ble to handle unsafe evolution scenarios, while still offering safe

volution guarantees considering a subset of the products. 

. Partially safe evolution 

To handle evolution scenarios such as the one illustrated in the

otivating example, we introduce a partial refinement theory that

ormalises our notion of partially safe evolution of product lines.

oreover, we present properties and analyse how refinement and

artial refinement operations can be interleaved, which might be

ften necessary in practice. 

To define the partial refinement notion, we rely on existing con-

epts from the refinement theory ( Alves et al., 2006; Borba et al.,

012 ). We assume a well-fordmeness function for asset sets (for-

alised by wf ( as ), where as is a set of assets). We use wf ( a ) for a

ingle asset a to denote wf ({ a }). Well-formedness could mean, for

nstance, that the artefacts are compiling properly. We assume this

unction, instead of concretely defining it, because its implementa-

ion could change depending on the particular language used for

he assets of a product line. A product is then defined as a well-

ormed set of implementation assets, and a set of assets as ′ refines

nother set of assets as , denoted by as � as ′ , whenever as ′ preserves

he observable behaviour of as Borba et al. (2012) . Assets might

e available to several products (domain engineering) or local to a

ingle product (application engineering). Our theory is focused on

omain engineering. 

We also assume that the asset refinement relation � is a pre-

rder. Reflexivity is essential here, and this is aligned with the idea

hat refinement means “equal or better”. Consequently, every set

f assets needs to refine itself. The fact that two sets of assets are

qual imply that they have the same observable behaviour. Thus,

t is considered a refinement. Transitivity also holds ( Borba et al.,

012 ). If a set of assets as is refined by a set of assets bs , and bs is

efined by the set cs, cs also refines as . 

Three main elements are used in product lines: a feature model

FM) that has features and dependencies among them; an asset
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Fig. 1. SPL three main elements. 
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mapping (AM) that relates asset names (the AM dom ) and assets

(the AM img ); a configuration knowledge (CK) that maps features

to asset names. We provide the formal definition of the AM be-

low ( Definition 1 ). The CK can be defined in several ways, but

just to illustrate we provide a possible concrete definition below

in Definition 2 . To make these definitions more clear, we illustrate

these three elements in Fig. 1 by using the same example from

Section 2 . A product line is defined as a triple (FM,AM,CK) that

generates well-formed products ( Borba et al., 2012 ). This means

that the notion of product line well-formedness is defined in terms

of well-formedness for products. More specifically, a product line is

considered well-formed ( wf ( pl )) when all products p ∈ pl are well-

formed ( wf ( p )). 

We do not assume specific languages for these three elements.

The FM, for instance, could be any kind of variability model, such

as the Linux Kconfig. For an arbitrary FM F , we assume a semantics

function [[ F ]], which yields the set of all valid configurations gener-

ated from F . A configuration is a feature selection, which can usu-

ally be represented as a set of feature names. The product genera-

tion process consists of three main phases. (1) Users select the de-

sired features that constitute a configuration. (2) By processing the

CK, it is then possible to obtain the asset names that constitute the

product represented by a configuration. (3) The final product is ob-

tained by checking which assets are mapped to the asset names in

the AM. The three product line elements have inter-dependencies,

and this makes the product line management complex. For this

reason, we need to take into account these three elements in or-

der to generate a product. The product generation function is the

CK semantics function, denoted by [[ K]] A c , that takes a CK K , an

AM A , a configuration c and yields the respective product. When

the configuration c is valid, [[ K]] A c generates a valid product. 

Definition 1 (Asset Mapping) . An Asset Mapping AM is defined as

a set of pairs ( n, a ) where n is an asset name and a is an asset.

This set must satisfy the uniqueness property, which means that

an asset name n is only associated with a single asset. Therefore, if

there are two assets a 1 and a 2 associated with the same name ( n ),

a is equal to a . 
1 2 
nique (pairs ) = ∀ (n, a 1 , a 2 ) : (n, a 1 ) ∈ pairs ∧ (n, a 2 ) ∈ pairs 

⇒ a 1 = a 2 

M : { pairs : F[ AssetName, Asset] | unique (pairs ) } 
efinition 2 (Compositional CK) . A compositional CK is defined as

 set of items, where each item is formed of a feature expression

nd a set of asset names. Intuitively this is a way of connecting

eatures with their respective implementations. 

K : F[ F ormula, P[ AssetName ]] 

Product line refinement happens when all products in the orig-

nal product line are refined in the evolved product line, as estab-

ished in Definition 3 . This applies when locally refactoring code,

r removing unused assets, for example. We should notice that the

efinition only requires product refinement to hold, therefore con-

gurations are allowed to change when matching a product of the

riginal product line with a product of the new product line. This

appens, for example, in feature renaming scenarios, since config-

rations are sets of feature names, which change due to renam-

ng. Consequently, feature renaming is a product line refinement,

s feature names do not matter. 

efinition 3 (Product line refinement) . For arbitrary product lines

 = (F , A, K) and L ′ = (F ′ , A 

′ , K 

′ ) , L ′ refines L , denoted by L � L ′ ,
henever 

 c ∈ [[ F ]] · ∃ c ′ ∈ [[ F ′ ]] · [[ K ]] A c � [[ K 

′ ]] A ′ c ′ . 

.1. Partial refinement 

The refinement notion is applicable in several scenarios, such as

sset refinements and feature renaming. However, there are many

cenarios where a subset of the existing products do not preserve

ehaviour. To support examples like the one shown in Section 2 ,

e propose a partial refinement theory. 

The difference between partial refinement and refinement is

hat the partial notion assumes that only some products are re-

ned and we illustrate this in Fig. 2 . On the left side, the products

 1, p 2 and p 3 from the initial product line L 1 are refined by p 1 ′ ,
 2 ′ and p 3 ′ , respectively. The product p 4 (in red colour) is not re-

ned, as there is no compatible product in L 2. This could happen

n a feature removal scenario, for instance. The product p 4 could

ave the removed feature, so there would be no compatible prod-

ct in L 2. We use S as the set of configurations refined, which cor-

esponds to { c 1, c 2, c 3}. As p 4 is not refined, c 4 cannot be in S . On

he right side, we have product line refinement. All products from

 1 are refined in L 2. So, we have that L 1 � L 2. Note that partial re-

nement holds if the configurations remain unchanged. This is the

eason for having c 1, c 2 and c 3 on the left side. The refinement

elation, in contrast, allows configurations to change and we can

ave c 1 ′ , c 2 ′ , c 3 ′ and c 4 ′ on the new product line. 

We formalise the partial refinement notion in Definition 4 . We

se S as an index to denote the subset of refined product config-

rations, that is, valid feature selections from the FM. More pre-

isely, for product lines L and L ′ , and set of configurations S , we

ay that L ′ partially refines L with respect to S when product con-

gurations from S are valid for both FMs, and product refinement

olds for all such configurations. The first condition is necessary

o guarantee that all configurations in S are valid according to the

espective product lines. Otherwise, the set S could have spurious

onfigurations. 

efinition 4 (Partial product line refinement) . For arbitrary prod-

ct lines L = (F , A, K) and L ′ = (F ′ , A 

′ , K 

′ ) , and a set of configura-

ions S, L ′ partially refines L for the configurations in S , denoted by
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Fig. 2. Partial Refinement (left) versus Refinement (right). 
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Fig. 3. Partial refinement transitivity. 
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 � S L 
′ , whenever 

 ⊆ [[ F ]] ∧ S ⊆ [[ F ′ ]] ∧ ∀ c ∈ S · [[ K ]] A c � [[ K 

′ ]] A ′ c . 

To support developers in examples like the one in Section 2 ,

e could simply associate L with the product line before the fea-

ure removal, and L ′ with the resulting product line after removing

EDS_RENESAS_TPU . Thus, S would be the set of all configurations

hat do not contain LEDS_RENESAS_TPU . 

Since the only modification is the feature removal, and we fil-

er the respective changed products by ensuring refinement only

or configurations in S , partial refinement holds. Partial refinement

ould not hold, for example, if S included configurations contain-

ng LEDS_RENESAS_TPU , as S would not be a subset of [[ F ′ ]]. Hence,

onsidering that we give guarantees that the other products are

efined, developers would only need to test at most products that

ad LEDS_RENESAS_TPU . This could consequently increase produc-

ivity. The previous theory gives no guarantees for this case, so

evelopers would have no support. We should notice that we are

omparing products generated with the same c for the two prod-

ct lines, so configurations cannot change. Therefore, feature names

atter . For this reason, feature renaming is not a partial refine-

ent. We revisit this topic later and present a more general notion

f partial refinement to cover feature renaming. 

The partial refinement relation is reflexive and transitive, which

re essential conditions to support stepwise partially safe evolu-

ion. Theorem 1 establishes that every product line is partially re-

ned by itself. As required by Definition 4 , we need to assure that

 is a subset of the valid configurations generated from the respec-

ive product line. 

heorem 1 (Partial product line refinement reflexivity) . For an ar-

itrary product line L = (F , A, K) , and a set of configurations S, if

 ⊆[[ F ]], then L � S L. 

roof. Let L = (F , A, K) be an arbitrary product line. By

efinition 4 , we have to prove that S ⊆[[ F ]] and ∀ c ∈ S · [[ K]] A c �
[ K]] A c . The first condition is already assumed by the theorem and

he second follows from asset refinement reflexivity ( Borba et al.,

012 ). �

One might want to consecutively perform partial refinement

perations, and the transitivity property guarantees that this is fea-

ible, and that it might result in refined products. Given that the

onsecutive partial refinement operations might involve different

ubsets of products, we can only guarantee that refinement holds

or the intersection of the configurations refined in each step. For

nstance, as illustrated in Fig. 3 , given a product line L 1 , one could

rst perform a partial refinement operation, resulting in a product

ine L 2 , and then perform another change, obtaining L 3 . Assuming

hat S and T are the sets of configurations refined in each step, S

ould be the set of configurations c 1, c 2 and c 3, and T would be

he set of configurations c 1 and c 2. Assuming that S and T are dif-
erent, the resulting product line L 3 does not partially refine L 1 in

erms of S or T in isolation, because the products refined in the

rst step are not necessarily refined in the second step, and vice

ersa. But L 3 partially refines L 1 for the configurations that are in

oth sets: S ∩ T . This notion is formalised in Theorem 2 . 

heorem 2 (Partial product line refinement transitivity) . For arbi-

rary product lines L 1 , L 2 , L 3 , and set of configurations S and T, if

 1 � S L 2 and L 2 � T L 3 , then L 1 � S ∩ T L 3 . 

roof. Let L 1 = (F 1 , A 1 , K 1 ) , L 2 = (F 2 , A 2 , K 2 ) and L 3 = (F 3 , A 3 , K 3 )

e arbitrary product lines. Assume that L 1 � S L 2 and L 2 � T L 3 . By

efinition 4 , this amounts to 

 ⊆ [[ F 1 ]] ∧ S ⊆ [[ F 2 ]] (1)

 c ∈ S · [[ K 1 ]] 
A 1 
c � [[ K 2 ]] 

A 2 
c (2)

 ⊆ [[ F 2 ]] ∧ T ⊆ [[ F 3 ]] (3)

 c ∈ T · [[ K 2 ]] 
A 2 
c � [[ K 3 ]] 

A 3 
c (4)

e then have to prove that 

(S ∩ T ) ⊆ [[ F 1 ]] ∧ (S ∩ T ) ⊆ [[ F 3 ]] (5)

nd 

 c ∈ S ∩ T · [[ K 1 ]] 
A 1 
c � [[ K 3 ]] 

A 3 
c (6)

e can prove Predicate ( 5 ) by using Predicate ( 1 ) and Predicate

 3 ). To prove Predicate ( 6 ), assuming an arbitrary c ∈ S ∩ T , we have

o prove that [[ K 1 ]] 
A 1 
c � [[ K 3 ]] 

A 3 
c . Properly instantiating c in Pred-

cate ( 2 ) and Predicate ( 4 ), we have that [[ K 1 ]] 
A 1 
c � [[ K 2 ]] 

A 2 
c and

[ K 2 ]] 
A 2 
c � [[ K 3 ]] 

A 3 
c . The proof then follows by asset set refinement

ransitivity ( Borba et al., 2012 ). �

Note that S and T might be disjoint. For example, let us con-

ider, for simplicity, a product line with two features A and B only.

ne could first remove feature A and then feature B. S in this case

ould be the set of product configurations that do not have A , that
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is the configuration that has just the feature B . In the second trans-

formation, however, T corresponds to product configurations that

do not have B , that is the product configuration that has A only.

So, we would not be able to give guarantee for any product. This

may naturally happen in a number of scenarios but for others we

still give support after several transformations. This is important

when considering a system such as the Linux Kernel, which has

thousands of features. Therefore, we expect that for many of the

possible evolution scenarios, one could still be supported after per-

forming consecutive partially safe transformations. 

We also provide a property that allows developers to choose a

subset of S , given that partial refinement holds for S . This property

is formalised in Theorem 3 . So, if a product line refines another in

terms of S , this is also true for any subset of S . We try to make S

as large as possible to potentialize our support, but this does not

prevent one from choosing a smaller subset. 

Theorem 3 (Partial refinement holds for subset) . For arbitrary

product lines L and L ′ , and sets of configurations S and S ′ , if L � S L 
′

and S ′ ⊆S, then L � S ′ L ′ . 

Proof. For arbitrary product lines L = (F , A, K) and L ′ = (F ′ , A 

′ , K 

′ ) ,
and sets of configurations S and S ′ , by assuming L � S L 

′ and S ′ ⊆S ,

which amounts to 

∀ c ∈ S · [[ K]] A c � [[ K 

′ ]] A ′ c (7)

and 

∀ c ∈ S ′ · c ∈ S (8)

We then have to prove 

∀ c ∈ S ′ · [[ K]] A c � [[ K 

′ ]] A ′ c (9)

For an arbitrary c in S ′ , we have to prove that [[ K ]] A c � [[ K 

′ ]] A ′ c .

Properly instantiating c in Predicate ( 8 ), we have that c ∈ S . So, we

can instantiate c in Predicate ( 7 ) and this concludes our proof. �

3.2. Compositionality 

To simplify reasoning about partial refinement, it is important

to derive compositionality properties from our definition. These are

useful, for example, when the product line main elements evolve

separately to be later integrated to generate products. In this con-

text, one might need to change a specific artefact, for instance, the

FM, without changing the AM and CK. In this case, instead of using

the definition to verify partial refinement after changes are applied

to a specific artefact, we could rely on a theorem and verify partial

refinement in a simpler way. Developers could also modify differ-

ent product line elements. We analyse these scenarios and whether

such modifications preserve product line partial refinement. Com-

positionality theorems are provided in the existing refinement the-

ory ( Borba et al., 2012 ), so it would be important to provide the

same kind of modular support for partial refinement too. So, in-

stead of using the definition, one could use the compositionality

theorems provided here. 

3.2.1. FM partial equivalence 

We first analyse the FM. Developers often desire to change

feature types and dependencies. For example, a mandatory fea-

ture may become optional. The refinement theory already provides

support for this and other FM refinement scenarios. According to

the FM refinement notion ( Borba et al., 2012 ), a FM refines an-

other when the configurations of the initial FM are a subset of

the evolved FM configurations. FM refinement often implies prod-

uct line refinement and partial refinement (considering S to be all

initial configurations), as we would be able to generate all exist-

ing products in the new product line. However, in scenarios such
s a changing a feature from optional to mandatory, FM refine-

ent is not applicable because we do not simply increase the set

f configurations. In this case, the FMs may share configurations,

ut the new FM might have configurations that are extensions of

he configurations of the initial FM. Thus, to provide support for

uch scenarios, we establish a partial FM equivalence notion, relat-

ng two FMs in terms of a common set of configurations S. This

llows the initial FM to have configurations absent from the final

M. This contrasts with previous FM equivalence and refinement

otions, that require the initial FM semantics to be equal or a sub-

et of the final FM semantics ( Borba et al., 2012 ). 

efinition 5 (Feature model partial equivalence) . For arbitrary fea-

ure models F and F ′ , and a set of configurations S, F is equivalent

o F ′ modulo S , denoted by F ∼= S F 
′ , whenever 

 c ∈ S · c ∈ [[ F ]] ∧ c ∈ [[ F ′ ]] . 

Now, we would be able to support developers when transform-

ng a feature from optional to mandatory. Partial equivalence holds,

f S is the set of configurations in the initial FM that already had

he changed feature plus those that do not have its parent. We

hould notice that FM equivalence and refinement lead to FM par-

ial equivalence, but the opposite does not hold. 

As captured in Theorem 4 , FM partial equivalence leads to prod-

ct line partial refinement. Given a product line L , one can modify

he FM, by adding, removing or modifying features and dependen-

ies, but preserving a set of configurations S . Whenever only the

M is changed, there is still a partial product line refinement with

espect to the same S . Since a product line by definition is well-

ormed ( Borba et al., 2012 ) and we deal with arbitrary changes to F

hat result in F ′ , we know that L is well-formed. However, we have

o guarantee about L ′ , more precisely, whether configurations that

re in F ′ but are not in S lead to valid products. This is the reason

or requiring well-formedness. Partial refinement holds because we

re not checking products whose configurations are not in S . More-

ver, the partial FM equivalence guarantees that S is in both FMs.

either the AM nor the CK change. Therefore, we actually have ex-

ctly the same products if we only check configurations from S . 

heorem 4 (Feature model partial equivalence compositional-

ty) . For a product line L = (F , A, K) , a feature model F ′ , and a set

f configurations S, let L ′ = (F ′ , A, K) . If F ∼= S F 
′ and L ′ is well-formed

wf ( L ′ ) ), then L � S L 
′ . 

roof. For an arbitrary product line L = (F , A, K) , a FM F ′ and a

et of configurations S , assume that F ∼= S F 
′ . By Definition 5 , this

mounts to: 

 c ∈ S · c ∈ [[ F ]] ∧ c ∈ [[ F ′ ]] (10)

y Definition 4 we then need to prove that 

 ⊆ [[ F ]] ∧ S ⊆ [[ F ′ ]] (11)

nd 

 c ∈ S · [[ K]] A c � [[ K]] A c (12)

nd 

f (L ′ ) (13)

e can prove Predicate ( 11 ) directly from Predicate ( 10 ), and Pred-

cate ( 13 ) is assumed in the theorem. Finally, Predicate ( 12 ) is

rivially true from asset set refinement reflexivitiy ( Borba et al.,

012 ). �

.2.2. AM partial refinement 

Similarly to the FM, the AM may also be modified separately.

revious work shows that the source code is more frequently mod-

fied than the FM and CK ( Dintzner et al., 2014 ). In these cases,
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ne not necessarily modifies the FM and the CK. The existing AM

efinement compositionality notion ( Borba et al., 2012 ) is helpful

nly when all assets from the initial AM are refined by the evolved

nes. But, for example, that is not true in bug fix scenarios, when

hanges are not safe in at least one asset. 

According to Definition 6 , the AMs must have the same do-

ain. Additionally, for every asset a found in the initial AM A ,

here needs to be an asset a ′ in the evolved AM A 

′ with the same

ame ( an ), that refines the initial one ( a � a ′ ). AM refinement holds

n several situations, like in a function renaming scenario. If we re-

ame a function in each initial asset, all of them are refined by the

ew ones. 

efinition 6 (Asset mapping refinement) . For asset mappings A

nd A 

′ , A is refined by A 

′ whenever 

(dom (A ) = dom (A 

′ ) ∧ 

(∀ an ∈ dom (A ) ·
∃ a, a ′ · (an, a ) ∈ A ∧ (an, a ′ ) ∈ A 

′ ∧ a � a ′ )) 

To support such scenarios, we define partial AM refinement. As

tated in Definition 7 , an AM partially refines another for a sub-

et of names when refinement holds for the sub mappings derived

rom this subset. More specifically, the AM resultant from filter-

ng the original AM A according to a set of asset names ns (that

s formalised as A � ns , which expands to {( n : Name, a : Asset )|( n,

 ) ∈ A ∧ n ∈ ns }) needs to be refined (according to Definition 6 ) by

he AM obtained by filtering the new AM A 

′ according to ns . In the

ase of a bug fix scenario, the new AM would partially refine the

riginal one modulo the set of names of the assets not changed by

he fix. 

efinition 7 (AM Partial Refinement) . For arbitrary asset mappings

 and A 

′ , and a set of asset names ns, A 

′ partially refines A modulo

s , denoted by A � ns A 

′ , whenever 

(A � ns ) � (A 

′ � ns ) , 

K Evaluation 

AM partial refinement implies product line partial refinement,

ince products containing only asset names in ns are not affected.

s a product is represented as a set of assets, we need to dis-

over which products (and their configurations) have assets whose

ames are in ns to precisely express the set of refined products af-

er a change in an AM. Thus, in this context, we assume the CK

emantics function can be decomposed in terms of an evaluation

unction � _ � . We use � K� A c to denote a call to the evaluation with CK

 , AM A and configuration c . This function is similar to the CK se-

antics function, but instead of returning a set of assets, it returns

ssets and their names in the form of an AM (the submapping of

he original AM containing only the assets used to build the prod-

ct). This way, we are able to maintain the mapping and check

f a product has an asset associated with a specific name in the

M. We use the term assumption because we are not actually pro-

iding the function body or implementation, but only defining its

ignature. Due to this, the properties are also assumptions, which

s why we have them as axioms, since we are not able to prove

hem, given that we do not have a concrete function definition. 

ssumption 1 (Configuration knowledge evaluation) . 

 _ � : CK → AM → Con f iguration → AM 

To illustrate how the evaluation function works, consider the

roduct line example shown in Fig. 1 and assume that F, A and K

orrespond to its FM, AM and CK, respectively. This product line

as at least two features: LE DS _ RE NE SAS _ T P U and LEDS _ CLASS. If

e have a configuration c = LEDS _ CLASS , by calling the CK seman-

ics function [[ K]] A c , we would obtain the product containing only
his feature, which would contain only the leds − class.c asset. A

all to the evaluation function � K� A c , however, would return the

M containing the information related to the features present in

he configuration c , which would give us a single mapping con-

aining leds − class.c and its content. Note that they return simi-

ar results. The difference is that the evaluation function returns

n AM and the semantics function returns only the respective as-

ets. Thus, the CK evaluation function is also useful for establishing

 correspondence between configurations and asset names. Given

he semantics function, we only know the assets generated from a

onfiguration, but we do not have the tracking of the asset names.

Here we do not concretely define the CK semantics function.

e just define it in terms of the evaluation function, which is not

efined because we do not deal with any particular CK notion in

he general level. The evaluation function has is just given signa-

ure and satisfies a number of axioms. In our appendix we provide

wo types of CK semantics: (1) the compositional one, which cor-

esponds essentially to the union of assets mapped to the selected

eatures, and (2) the transformational one, which does not simply

joins” assets, but also applies transformations. In (1), we cannot

elect part of an implementation asset for a determined feature.

e can think of (2) as being the more general case where we have

 block of code denoting the scope of a feature, instead of an entire

mplementation asset. The semantics function is simply the image

f the AM returned by the evaluation function. As we want to keep

ur theory language independent, we do not offer a concrete defi-

ition because that would be inevitably specific to asset, class and

M languages. The result of the semantics function is just collect-

ng the assets in the resulting AM from the evaluation function,

nd ignoring their names. The assets of an AM constitute its im-

ge, which is denoted by A 〈 _ 〉 for an AM A. The semantics function

s then defined as img(� K� A c ) , which means the image of � K� A c . We

re assuming that the evaluation function captures the other steps

n the product generation process. 

efinition 8 (Configuration Knowledge Semantics) . Let ( F, A, K ) be

 product line and c be a configuration. Then, [[ K ]] A c = img(� K � A c ) 

anity Conditions 

To make sure the CK evaluation function for different languages

aptures the essence of the product generation process, we rely on

xioms that capture sanity conditions that such a function should

atisfy. These axioms rule out abnormalities such as changing an

sset name during the product generation process. First, we should

uarantee that the resulting asset names from the generated prod-

cts belong to the original asset mapping of the product line. Oth-

rwise, we could have dangling assets, which does not make sense.

or this reason, we formalise this in Axiom 1 . 

xiom 1 (CK evaluation must preserve AM domain) . For arbitrary

M A , CK K , configuration c , dom (� K� A c ) ⊆ dom (A ) 

We also state that unused assets do not influence the CK se-

antics in Axiom 2 . If the asset names of a determined product,

hich is the result of applying the CK semantics function, belong

o a set of names ns , the result of the CK evaluation should be the

ame using the entire AM or the filtered AM according to ns . The

easoning is that if the other names are not present in the respec-

ive product, they can be discarded. 

xiom 2 (Unused assets do not influence CK semantics) . For an

rbitrary AM A , a CK K , a set of asset names ns and a configuration

 , if dom (� K� A c ) ⊆ ns, then [[ K]] A c = [[ K]] A�ns 
c 

The third constraint is established in Axiom 3 . The evaluation

unction not only is forbidden to create new asset names, but

or asset mappings with equal domain, the resulting domain after
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applying the evaluation function also needs to be equal. So, the

evaluation function preserves equality over the domain of AM. 

Axiom 3 (Evaluation preserves equality over AM domain) . For ar-

bitrary AMs A and A 

′ , CK K , and configuration c , if dom (A ) =
dom (A 

′ ) , then dom (� K� A c ) = dom (� K� A 
′ 

c ) . 

The introduced axioms are essential to avoid an arbitrary eval-

uation function, and they do not overly restrict the applicability of

our theory, since they are mostly well-formedness conditions, to

prevent abnormal situations. To guarantee that both compositional

and transformational CKs satisfy these axioms, we instantiate this

theory using both CK notions and prove them. The axioms are also

important for stating and proving the AM compositionality theo-

rem. We also found that all product lines from the evolution sce-

narios analysed, which are detailed in Section 6 , obey the three

axioms. This confirms our intuition that they are reasonable to be

assumed. 

AM Partial Refinement Compositionality 

We finally establish Theorem 5 , which states that partial AM re-

finement implies partial product line refinement. We calculate the

set of configurations S for these situations based on the AM com-

monalities and differences. Configurations from S must not gener-

ate products containing the names that are not in ns , since as al-

ready discussed earlier in this section, these products are not re-

fined. So, partial refinement does not hold for them. Alternatively,

configurations that lead to products containing assets in the scope

of ns are refined. To define S , we use a restriction operator � that

takes the three elements of a product line ( F, A, K ) and a finite

set of asset names ns . It then yields configurations whose prod-

ucts have only assets that are in ns , as can be seen in Definition 9 .

However, it is not enough to filter configurations considering the

original AM, since A and A 

′ have different domains. So, we need to

define S as the intersection of filtering both AMs according to ns

(which is given by (( F, A, K ) �ns ) ∩ (( F, A 

′ , K ) �ns )). 

Definition 9 (Filtering Configurations by Asset Names) . Let ( F, A, K )

be a product line and ns be a set of asset names. Then, (F , A, K) �
ns = { c : Con f | c ∈ [[ F ]] ∧ dom (� K� A c ) ⊆ ns } 
Theorem 5 (Asset mapping partial refinement compositional-

ity) . For product lines L = (F , A, K) and L ′ = (F , A 

′ , K) , and a finite

set of asset names ns, if A � ns A 

′ then L � S L 
′ , where S = (F , A, K) �

ns ∩ (F , A 

′ , K) � ns . 

Proof. For an arbitrary PL L = (F , A, K) , an AM A 

′ and a finite set of

asset names ns . We have to prove that L � S L 
′ , where L ′ = (F , A 

′ , K)

and S = ((F , A, K) � ns ) ∩ ((F , A 

′ , K) � ns ) . According to Definition 4 ,

L � S L 
′ expands to 

S ⊆ [[ F ]] ∧ ∀ c ∈ S · [[ K ]] A c � [[ K ]] A 
′ 

c (14)

It is true that S ⊆[[ F ]], since this is expressed in the defini-

tion of S and of the operator. Then, we need to prove that, for

an arbitrary c in S , [[ K ]] A c � [[ K ]] A 
′ 

c . By properly instantiating K,

A, ns , and c in Axiom 2 , we have that [[ K ]] A c = [[ K ]] A�ns 
c . The

condition dom (� K� A c ) ⊆ ns is satisfied due to S definition. Using

Axiom 2 again, properly instantiated with K, A 

′ , ns , and c , we also

have [[ K ]] A 
′ 

c = [[ K ]] A 
′ �ns 

c . By replacing this in Predicate ( 14 ), we then

need to prove that [[ K ]] A�ns 
c � [[ K ]] A 

′ �ns 
c . Using Definition 7 , we have

that ( A � ns ) � ( A 

′ � ns ). 

Since asset mapping refinement implies product line refine-

ment ( Borba et al., 2012 ), we have that ∀ am 1 , am 2 · am 1 � am 2 ⇒
∀ K, c · w f ([[ K]] am 1 

c ) ⇒ w f ([[ K]] am 2 
c ) ∧ [[ K]] am 1 

c � [[ K]] am 2 
c . Instanti-

ating this equation with am 1 = A � ns and am 2 = A 

′ � ns, the first

condition holds because ( F, A, K ) is a product line, and by defini-

tion, every product line is well-formed. So, this is enough to prove
A�ns A ′ �ns 
that [[ K ]] c � [[ K ]] c . � s
.2.3. CK partial equivalence 

Now, we analyse scenarios where the CK structure is changed

n isolation and how this impacts the entire product line. Develop-

rs may need to modify the CK only, and it is important to sup-

ort them in these situations not only with our definition of par-

ial refinement, but also with a CK partial equivalence notion. An

xample of such scenario would be adding a mapping between ex-

sting features and artefacts, assuming a compositional CK. In this

ase, the FM and the AM do not suffer any change. Only the CK

s modified. Moreover, this scenario would not be considered CK

efinement because features from this new mapping may suffer

ehavioural change, thus making certain configurations not to be

efined. 

To address this and other evolution scenarios, we formalise a

artial equivalence notion to represent partial refinement changes

egarding the CK only. Notions to deal with refinement scenarios

ave already been proposed ( Borba et al., 2012 ). However, sev-

ral of the possible changes involving the CK are not refinements.

efinition 10 generalises all possible safe changes to the CK. We

tate that for a set of configurations S , the products generated us-

ng the original and final CKs are equal. If the CKs are equal, S

ould be the semantics of the FM, that is, the set of all valid con-

gurations. In contrast, S could eventually be empty, and it would

ot be possible to provide any kind of support or guarantee. 

efinition 10 (Configuration knowledge partial equivalence) . For

rbitrary CKs K and K 

′ , and a set of configurations S, K is equiv-

lent to K 

′ modulo S , denoted by K 

∼= S K 

′ , whenever 

 am, c ∈ S · [[ K]] am 

c = [[ K 

′ ]] am 

c 

Configuration Knowledge partial equivalence implies product

ine partial refinement. This is shown in Theorem 6 . Considering

n arbitrary product line L , let us suppose that a change is made

o the CK of L but preserving the set of configurations S . We then

btain L ′ , and we can say that L ′ partially refines L according to S

s long as S is a subset of the valid configurations generated from

he FM of L . Just to give an example, considering that we obtain K 

′ 
y removing a mapping from a hypothetical feature F to an asset

 present in K . In this case, S would be the set of configurations

n the FM that do not have F . Products containing F might not be

efined, since they will not have the asset a as before. So, configu-

ations containing F cannot be included in S . Since K is equivalent

o K 

′ according to S and S is a subset of F configurations, L ′ refines

 according to the same S . 

heorem 6 (Configuration knowledge partial equivalence compo-

itionality) . For a product line L = (F , A, K) , a CK K 

′ , and a set of

onfigurations S, let L ′ = (F , A, K 

′ ) . If K 

∼= S K 

′ , S ⊆[[ F ]] and L ′ is well-

ormed, then L � S L 
′ . 

roof. For an arbitrary product line L = (F , A, K) , a CK K 

′ and a set

f configurations S , assume that K 

∼= S K 

′ and S ⊆[[ F ]]. This amounts

o: 

 am, c ∈ S · [[ K]] am 

c = [[ K 

′ ]] am 

c (15)

y Definition 4 we then need to prove that 

 ⊆ [[ F ]] (16)

nd 

 c ∈ S · [[ K]] A c � [[ K 

′ ]] A c (17)

e are already assuming Predicate ( 16 ). So, for an arbitrary c in S ,

e need to prove that [[ K ]] A c � [[ K 

′ ]] A c . By properly instantiating am

nd c in Predicate ( 15 ) with A and c , we have [[ K ]] A c = [[ K 

′ ]] A c . So,

e can replace [[ K 

′ ]] A c by [[ K]] A c and the proof follows from asset
et refinement reflexivitiy ( Borba et al., 2012 ). �
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.3. Combining different refinement and partial refinement notions 

We also reason about compositionality in terms of combining

ifferent refinement notions, since the refinement and partial re-

nement theories are complementary. Thus, practitioners may de-

ire to interleave refinement and partial refinement operations. For

mprovements or adding new features with behaviour preserva-

ion, one can use the refinement theory. After that, developers

ay need to remove a feature, such as the removal scenario il-

ustrated in Section 2 . For such cases, the partial refinement notion

hould be used. Hence, the theories might be used interchangeably

nd we need to provide support in the sense that, when applying

onsecutive transformations, refinement still holds for a subset of

roducts. 

efinement and partial refinement 

When a partial refinement over S is followed by a refinement,

e would ideally have partial refinement for products in S by tran-

itivity. However this does not hold because, in the refinement

ransformation, feature names do not matter, contrasting with the

artial refinement notion. In fact, as Definition 3 admits configu-

ations to change, refinement is not necessarily a particular case

f partial refinement even when S is equal to the set of all valid

onfigurations. 

To support interleaving of safe and partially safe changes,

efinition 11 describes a more general partial refinement notion

hat allows configurations to change according to a renaming func-

ion f . The function f maps configurations from the initial to the

nal feature models. Then, given an initial configuration c from

he initial feature model, refinement holds for the product gen-

rated from f ( c ). In a feature renaming situation, supposing that

e change the feature name from P to P ′ , f would be defined as

f (c) = c[ P ′ /P ] . This function takes a configuration c and returns c

f c does not have the feature P . Otherwise, it gives a new configu-

ation c ′ as result, that is equal to c , except that every occurrence

f P is replaced by P ′ . 

efinition 11 (Weak partial refinement) . For arbitrary product

ines L = (F , A, K) , L ′ = (F ′ , A 

′ , K 

′ ) and a function f : [[ F ]] → [[ F ′ ]], L ′
eakly partially refines L modulo f , denoted by L � f L 

′ , whenever 

 c ∈ dom ( f ) · f (c) ∈ [[ F ′ ]] ∧ [[ K ]] A c � [[ K 

′ ]] A ′ f (c) . 

The partial refinement notion is a particular case of

efinition 11 (when f is the identity function over S ). Thus,

his weaker notion supports situations where configurations

hange, which are not covered by the default partial product line

efinement notion ( Definition 4 ). Since the weak definition is more

eneral, we could have it instead of having both partial refinement

elations. However, Definition 4 is less complex to reason about,

nd it covers the majority of scenarios, unless developers need to

eal with feature renaming, so we decided to keep both. 

We have a function f as an index because allowing configura-

ions to be arbitrarily modified having a set of configurations S as

n index would lead to relations that are not transitive. Transitiv-

ty does not hold for such a definition because we have no control

f the new configurations; they could be arbitrary. Thus, when ap-

lying consecutive refinements, we would not know if the refined

onfigurations were the same as the ones refined in the first step.

ence, even assuming two refinement operations in terms of the

ame S , transitivity does not hold for S . 

Similarly to Definition 3 , the weak partial refinement relation

s also a preorder, as we should support developers in stepwise

efinement. In Theorems 7 and 8 , we formalise the reflexivity and

ransitivity properties. A product line partially refines itself, accord-

ng to Definition 11 , when the function f is an identity. Otherwise,
t makes no sense to compare different products in the same prod-

ct line. 

heorem 7 (Weak partial refinement reflexivity) . For an arbitrary

roduct line L = (F , A, K) , and a function f : Conf → Conf, if f is the

dentity function and dom ( f ) ⊆[[ F ]], then L � f L. 

roof. Let L = (F , A, K) be an arbitrary product line. By

efinition 11 , we have to prove that, for an arbitrary c in dom ( f ),

[ K ]] A c � [[ K ]] A 
f (c) 

. Since f is the identity function, we can replace

 ( c ) by c and the proof follows from asset refinement reflexivity

 Borba et al., 2012 ). �

For the transitivity property, the reasoning is similar to

heorem 2 . Instead of giving refinement guarantees for the in-

ersection of the two sets of configurations, we compose the two

unctions defined for each evolution step. 

heorem 8 (Weak partial refinement transitivity) . For arbitrary

roduct lines L 1 , L 2 , L 3 , and functions f : Conf → Conf and g :

onf → Conf, if L 1 � f L 2 and L 2 � g L 3 , then L 1 � g ◦f L 3 . 

roof. Let L 1 = (F 1 , A 1 , K 1 ) , L 2 = (F 2 , A 2 , K 2 ) and L 3 = (F 3 , A 3 , K 3 )

e arbitrary product lines. Assume that L 1 � f L 2 ∧ L 2 � g L 3 . By

efinition 11 , this amounts to: 

 c ∈ dom ( f ) · [[ K 1 ]] 
A 1 
c � [[ K 2 ]] 

A 2 
f (c) 

(18)

 c ∈ dom (g) · [[ K 2 ]] 
A 2 
c � [[ K 3 ]] 

A 3 
g(c) 

(19)

e then have to prove that 

 c ∈ dom (g ◦ f ) · [[ K 1 ]] 
A 1 
c � [[ K 3 ]] 

A 3 
g( f (c)) 

(20)

or an arbitrary c ∈ dom ( g ◦f ), we need to prove that [[ K 1 ]] 
A 1 
c �

[ K 3 ]] 
A 3 
g( f (c)) 

. Since the domain of g ◦f is equal to the domain of f ,

e can instantiate c in Predicate ( 18 ). We then have [[ K 1 ]] 
A 1 
c �

[ K 2 ]] 
A 2 
f (c) 

. Properly instantiating c in Predicate ( 19 ) with f ( c ), we

hen have [[ K 2 ]] 
A 2 
f 

(c) � [[ K 3 ]] 
A 3 
g( f (c)) 

. The proof then follows by asset

et refinement transitivity ( Borba et al., 2012 ). �

When one applies a partial refinement followed by a refine-

ent, we have a weak partial refinement. A possible scenario of

uch situation is when one changes an asset in a non behaviour-

reserving way and then renames a feature,. Since not all products

re refined because of the asset change operation, the domain of

he function is only the set of configurations whose products do

ot have the changed asset. Suppose that feature P was renamed

o P ′ , L is the product line before these two operations and L ′ is the

nal product line, we then guarantee that L � f L 
′ . The function f in

his case would also be defined as f (c) = c[ P ′ /P ] , since in the asset

hange operation configurations were not changed. This notion is

ormalised in Theorem 9 . When partial refinement is followed by

efinement, there is a function that maps configurations from S to

he final product line, so that weaker partial refinement holds. 

heorem 9 (Partial refinement and refinement) . For product lines

 1 , L 2 and L 3 and a set of configurations S, let F 3 be the FM of L 3 . If

 1 � S L 2 and L 2 � L 3 , then, for some function f : S → [[ F 3 ]], L 1 � f L 3 . 

When a refinement ( Definition 3 ) occurs, we can derive a func-

ion that maps configurations. Given an initial configuration from

he initial FM, the function arbitrarily chooses a configuration from

he final FM so that product refinement holds. So, in this case we

ould say that there is a function g : [[ F 2 ]] → [[ F 3 ]] that maps con-

gurations from L 2 to L 3 . In the first case, when we have a par-

ial refinement ( Definition 4 ), we require that configurations do not

hange, differently from Definition 11 . So, we can rely on the iden-

ity function I : S → [[ F ]], since the initial configuration is equal to
2 
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Fig. 4. Commutative diagram (refinement and partial refinement). 
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the final one. Thus, f : S → [[ F 3 ]] in Theorem 9 would be the com-

position of g with the identity function I . Product refinement then

holds by transitivity. 

If the operations are conducted in the opposite order (refine-

ment followed by partial refinement), the reasoning and end result

are analogous, so we omit the details here. The respective theorem

and proof can be found in our online appendix. 

Name aware refinement and partial refinement 

The composition of refinement and partial refinement is intri-

cate, because refinement allow changing feature names and con-

figurations. A plainer composition can be established with a name

aware, stronger notion of refinement. It is stronger than the stan-

dard notion in the sense that it gives less flexibility in terms of

configurations. This definition supports less scenarios when com-

pared to Definition 3 . Feature renaming, for instance, is not a re-

finement according to this notion. Since configurations are usually

sets of feature names, when changing such names, configurations

containing them are impacted. 

Definition 12 (Name aware product line refinement) . For arbitrary

product lines L = (F , A, K) and L ′ = (F ′ , A 

′ , K 

′ ) , L ′ strictly refines L ,

denoted by L �L ′ , whenever 

∀ c ∈ [[ F ]] · c ∈ [[ F ′ ]] ∧ [[ K ]] A c � [[ K 

′ ]] A ′ c . 

Previous work has shown that this relation has similar proper-

ties to the refinement relation, like being a preorder ( Borba et al.,

2012 ). This notion ( Definition 12 ) is similar to the partial refine-

ment notion ( Definition 4 ) in the sense that it does not allow any

change in configurations. For product lines L and L ′ , name aware

refinement implies partial refinement, provided that the set of con-

figurations S is present in L . As a consequence, by transitivity, when

a partial refinement is followed by a name aware refinement, we

have a partial refinement, as shown in Theorem 10 . If the refine-

ments are performed in the opposite order, the result is also a par-

tial refinement. 

Theorem 10 (Partial and name aware refinement) . For product lines

L 1 , L 2 and L 3 and set of configurations S, if L 1 � S L 2 and L 2 �L 3 , then

L 1 � S L 3 . 

Proof. For arbitrary product lines L 1 = (F 1 , A 1 , K 1 ) , L 2 = (F 2 , A 2 , K 2 )

and L 3 = (F 3 , A 3 , K 3 ) and set of configurations S , we assume L 1 � S L 2
and L 2 �L 3 . This expands to 

S ⊆ [[ F 1 ]] ∧ S ⊆ [[ F 2 ]] (21)

∀ c ∈ S · [[ K 1 ]] 
A 1 
c � [[ K 2 ]] 

A 2 
c (22)

and 

∀ c ∈ [[ F 2 ]] · c ∈ [[ F 3 ]] ∧ [[ K 2 ]] 
A 2 
c � [[ K 3 ]] 

A 3 
c (23)

We then have to prove 

S ⊂ [[ F 1 ]] ∧ S ⊂ [[ F 3 ]] (24)

and 

∀ c ∈ S · [[ K 1 ]] 
A 1 
c � [[ K 3 ]] 

A 3 
c (25)

Predicate ( 24 ) is true from Predicate ( 21 ) and Predicate ( 23 ). To

prove Predicate ( 25 ), we assume an arbitrary c in S . We then prop-

erly instantiate c in Predicate ( 22 ) and Predicate ( 23 ), as any c in S

is also in [[ F 2 ]] vide Predicate ( 21 ) and the proof follows by asset
set refinement transitivity Borba et al. (2012) . � p
ommutativity of name aware refinement and partial refinement 

Finally, we show that name aware refinement and partial re-

nement transformations lead to the same product line when ap-

lied in different orders. For instance, given a product line L 1 , sup-

ose that a developer performs a name aware refinement, such as

ocally refactoring an asset, obtaining L 3 , and then partially refines

he product line by removing a feature, obtaining L 4 . Fig. 4 rep-

esents a commutative diagram that shows that if we instead first

pply this same partial refinement operation (yielding L 2 ) and then

efine the asset, we obtain the same L 4 . Thus, in this case, the or-

er in which the transformations are applied does not matter. 

Properties like this reflect what happens during development,

here practitioners might want to apply several different opera-

ions consecutively, and it is helpful to be sure that applying re-

nements in a different order can produce the same result. We

ormally derive and prove two theorems from the commutative di-

gram structure shown in Fig. 4 . We only present the proof for the

rst theorem; the other follows the same strategy. Both proofs can

e found in our online appendix ( Partial refinement theory web-

ite ). 

In Theorem 11 , we give support in case developers are doing

rst a partial refinement and then a name aware refinement. The

heorem establishes that there is an alternative way to obtain the

ame resulting product line, by performing the corresponding op-

rations in the opposite order. Theorem 12 is analogous. This the-

rem has an extra condition when compared to the first one. This

roperty only holds if S is a subset of the valid configurations gen-

rated by the initial product line L 1 . This condition is necessary,

s otherwise we could have invalid products, since invalid config-

rations may not obey dependency rules among features. Thus, it

oes not make sense to refine a product line in terms of an S that

s not part of the product line configurations. 

heorem 11 (Partial refinement and name aware refinement com-

ute (1)) . For product lines L 1 , L 2 and L 4 , and a set of configura-

ions S, if L 1 � S L 2 and L 2 �L 4 , then, for some product line L 3 , we have

 1 �L 3 ∧ L 3 � S L 4 . 

roof. For arbitrary product lines L 1 , L 2 , L 4 and a set of configura-

ions S , we assume L 1 � S L 2 and L 2 �L 4 to prove that 

 L 3 · L 1 � L 3 ∧ L 3 � S L 4 (26)

nstantiating L 3 with L 1 in Predicate ( 26 ), we then have to prove

hat L 1 �L 1 and L 1 � S L 4 . Since � is a preorder, L 1 �L 1 trivially

olds. To prove that L 1 � S L 4 , we use partial refinement transitiv-

ty ( Theorem 2 ). We just need to show that L 2 � S L 4 . Since we as-

ume that L 2 �L 4 , and we know that the name aware refinement

s a specific case of partial refinement (when S is the entire set of

alid configurations), this concludes the proof. �

heorem 12 (Partial refinement and name aware refinement com-

ute (2)) . For product lines L 1 , L 3 , L 4 and a set of configurations S.

et F 1 be the FM of L 1 . If S ⊆[[ F 1 ]], L 1 �L 3 and L 3 � S L 4 , then, for some
roduct line L 2 , we have L 1 � S L 2 ∧ L 2 �L 4 . 
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Fig. 5. Remove feature compositional partial refinement template. 
.4. Discussion 

In the previous section, we establish a relationship between the

artial refinement and name aware refinement relations, through a

ommutative diagram illustrated in Fig. 4 . We believe that the di-

gram also holds if we replace � by � . Nevertheless, to prove the

orrespondent theorems, we would need to enrich our theory. In-

tead of having only relations connecting product lines, we would

lso need transformation operations expressing how product lines

hange. Instead of considering just sets of product lines, our encod-

ng would have also to consider sets of transformations or changes

mong product lines. The proof would then be made by induction

ver the set of possible transformations. 

. Partially safe evolution templates 

As mentioned in Section 3 , the partial refinement theory can be

pplied to different contexts than the refinement theory (possibly

ven more). In this section, we illustrate such contexts and define

emplates that are abstractions of recurrent practical evolution sce-

arios. We defined such templates based on preexisting refinement

emplates ( Neves et al., 2015; Borba et al., 2012 ), by changing con-

itions to allow partially safe changes. Our templates help because

hey provide guidance on how to evolve a product line guaran-

eeing safe evolution for a subset of the products. Moreover, de-

elopers do not need to reason over the partial refinement defini-

ion for these scenarios; the templates already provide some guid-

nce. Templates might also avoid errors during the evolution pro-

ess and increase developers confidence, since they provide guid-

nce on how to change a product line. 

A template has a left-hand side pattern (LHS) and a right-hand

ide pattern (RHS), stating syntactic and semantic conditions for

he transformation to be applied. They correspond to abstractions

hat capture properties of the initial and evolved product lines,

espectively. We make use of meta-variables to represent the ini-

ial and evolved product line elements. An element is supposed to

e unchanged when the corresponding meta-variable is present in

oth sides. In case one follows the syntactic and semantic rules

stablished by templates, partial refinement holds for a specified

ubset of products S . 

We represent the initial and evolved product lines with the

hree elements: FM, AM and CK and we show them in detail when

hey are changed. We use a tree notation to represent the FM. Al-

hough the FM structure can be large, with several features, we

hoose to show only the ones affected in the particular evolution

cenario. So, if the FM in the template contain only feature F, it

s implicit that there might be upper and sub-trees attached. Al-

hough we do not show in the templates, we assume that the FM

ontains cross-tree constraints, which are formulae used to build

mplications involving features usually not directly related in the

ree. For example, features P and O can be siblings and one would

ave the constraint P ⇒ O to guarantee that whenever P is selected,

 is also selected. As we define in Section 3 , the AM is basically a

et of pairs, each pair containing an asset name and an asset. We

how these pairs between braces, and each pair has the form of

 �→ a , meaning that the asset name n is associated with the asset a .

he CK is represented as a table-like structure with two columns:

n the left-side column we have feature expressions containing

eatures names and first-order logic boolean operators. These ex-

ressions could be, for instance, P ∧ O (the case where both features

 and O are selected) or ¬P ∨ O (the case where we have either not P

r O ). The right-side column depends on the CK language adopted.

t can be either sets of asset names or transformations. We show

ach case later in detail. 

The value of S is defined in terms of the FM, AM and CK of the

roduct lines in the templates. Establishing S this way helps to un-
erstand the change impact, since products in the scope of S are

ot impacted. We should remember that product line refinement

olds for any configuration in S (according to Theorem 3 from

ection 3 ), so one might choose to work with a smaller subset of S .

e assume two notations for the CK structure: compositional and

ransformational (see Neves et al., 2015 ). So we provide three sets

f templates, one in each subsection, first focusing on templates for

he compositional notation, then on templates for the transforma-

ional notation, and finally on more general templates that apply

o both notations. 

.1. Compositional templates 

In this section, we present templates that use the compositional

K notation, consisting of a table-like structure with two columns.

he left column has feature expressions (enabling conditions) and

he right column has asset names, indicating that a given configu-

ation yields a product containing the names in the right whenever

he expression in the left evaluates to true. In the following, we

nalyse a number of possible scenarios of partially safe evolution. 

emove Feature 

We first analyse feature removal situations, which is an usual

cenario in a product line development context. One often decides

o exclude features for diverse reasons ( Passos et al., 2015 ); for

nstance, they are no longer used or not needed by customers. We

efine the Remove feature template in Fig. 5 . Products that did

ot have the removed feature in the original product line keep the

ame behaviour, and the others might not be refined. We show the

hree elements before and after the feature removal in Fig. 5 . The

eature model, which is shown in a tree-like notation, the asset

apping, which is a set of mappings from asset names to assets

inside curly brackets), and the configuration knowledge, which is

hown in a table-like structure. In this template, the three product

ine elements are changed. 

By syntactically analysing the Remove feature template in

ig. 5 , we observe that the initial FM ( F ), has the O feature, which

s removed, and consequently, the resulting FM ( F ′ ) does not have

t. We also notice that O is P ’s child. Nothing else is changed in

he FM, which might have other features beyond O and P . We as-

ume that the initial CK has references to O , so from the LHS to the

HS, every row in the CK (like the one containing e ′ and n ′ ) refer-

ncing O is removed. If the CK has no references to O , the feature

ould be removed directly but this scenario would actually consist

n a product line refinement. The AM has names such as n and n ′ 
apped to a and a ′ . Similarly to the FM and CK, the AM also loses

 set of mappings, like a ′ which implements O . 

The guarantees provided by the template only hold if some con-

itions are valid. We need to make sure that when e ′ is true, O
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has been selected, otherwise it would make no sense to exclude

this expression from the CK. To do so, we require that e ′ ⇒ O . Con-

sequently, a ′ is removed, since it must be in a product whenever

O is selected. We could use O instead of e ′ , but this would restrict

the template applicability. When using e ′ , we are allowing any ex-

pression where O is true. When a feature is removed, the intuition

is that the products that did not have the respective feature do not

change, so behaviour is preserved. The other ones might not be

compatible to any product in the new product line because they

lose functionality, unless a ′ adds no extra behaviour to a prod-

uct. To specify S to capture that, we make use of the � operator,

which filters configurations from a FM according to a feature ex-

pression. This expression may contain feature names and logical

operators, such as ∧ , ¬ and ∨ . The expression P ∧ Q , for instance, is

satisfied by a configuration c when c has the P and Q features. For

an arbitrary FM F and a feature expression e , we use F �e to denote

the set of configurations in [[ F ]] that do not satisfy e . This is for-

malised in Definition 13 . Thus, we specify S as F �O , giving refine-

ment guarantees only for product configurations that are in F and

do not include O . Since we only remove the line containing e ′ and

n ′ from the CK, it is required that O does not appear in e and other

CK lines, otherwise the feature would not be completely removed.

This is to avoid that another expression references O either directly

or indirectly. Finally, we also need a well-formedness condition to

guarantee that the products not refined (the ones that had O in

the initial product line) remain well-formed. Since we assume that

assets are removed from the initial to the evolved product line, we

cannot guarantee that existing products remain well-formed, ex-

cept those in S . 

Definition 13 (Filtering Configurations by Feature Expression) . Let

F be a FM and e be a feature expression. Then, F � e = { c :
on f | c ∈ [[ F ]] ∧ ¬ sat(c, e ) } 

The Remove feature template does not assume that O is a leaf

feature. However, when O is removed, the subtree under O is also

removed according to the template. One might need to remove O ,

but keeping its children. Thus, we would need another template,

which would be a variation of the template illustrated in Fig. 5 , to

deal with such scenario and this is part of our future work. 

Strictly, this template does not match the example discussed in

Section 2 , but it is compatible with a slight variation of the tem-

plate, where two assets are removed. To illustrate that, we instan-

tiate the meta-variables for the example. In this case, F is instanti-

ated with the initial Linux VM containing LEDS_RENESAS_TPU , and

F ′ is the resultant VM without this feature. The initial CK is instan-

tiated with the Linux CK, including the line shown in Listing 2 and

the changed CK is the same except for this mapping. The Linux AM

could be represented by mappings between the file names to their

respective contents. Using the feature removal example, n ′ would

be drivers/leds/leds-renesas-tpu.c and drivers/leds/leds-renesas-tpu.h ,

and a ′ , the respective contents of these source code files. The other

mappings, such as n �→ a , correspond to other source file names and

the respective contents. The new AM is obtained from the initial

by removing the mapping n ′ �→ a ′ , which corresponds to the im-

plementation of the removed feature. It is true that e ′ ⇒ O , since

e ′ is LEDS_RENESAS_TPU . This feature appears only in e ′ , since we

did not find occurrences of this feature in the remaining items of

the CK. Assuming that the resulting product line is well-formed,

all conditions are satisfied. S is F � LEDS_RENESAS_TPU . Thus, refine-

ment holds for these configurations. The other products are not

refined since they have the removed feature, thus not preserving

behaviour. Differently from product line refinement ( Definition 3 ),

which requires every product in the initial product line to be com-

patible with at least one product in the new product line, partial

refinement requires refinement for a subset of the initial products.
herefore, in this case, only products without LEDS_RENESAS_TPU

re refined. 

.2. Transformational templates 

As shown in the previous section, feature removal is a possi-

le partially safe evolution scenario developers might face in prac-

ice. We also have templates to deal with other scenarios, such as

sset additions, removals and changes to the CK ( Sampaio et al.,

016 ). Here, we deal with the same scenarios, but assuming that

he CK may also have transformations. Our theory covers two types

f transformations: preprocess and select . By using the former, one

an limit the scope of a feature by using #ifdefs around the cor-

esponding code block. Thus, the included assets might not be the

riginal ones; they may suffer changes during the compilation pro-

ess. The latter simply selects the corresponding asset, so it does

ot change the asset itself. 

emove Feature 

Developers may need to remove features for diverse reasons, as

lready explained in Section 4.1 . The compositional Remove fea-

ure template assumes that the CK has feature expressions and

sset names, whereas the transformational one deals with transfor-

ations instead of names. They also differ in the structures under-

ying their similar CK syntax. While the former definition consists

f a set of items, the latter consists of a list. It is not feasible to

ork with these different representations at the same time. Addi-

ionally, a number of conditions may vary and impose restrictions

n the artefacts format. For instance, one could assume an artefact

ith an ifdef block, while another simply does not deal with such

tructure. For these reasons, we present two versions of the Re-

ove feature and other templates and this increases expressive-

ess of the partial refinement notion, as we are allowing different

PL languages. Thus, we also have a template to deal with feature

emovals but allowing the use of transformations in the CK and

fdefs in the AM structure. In Fig. 6 , the three parts of the prod-

ct line are affected. Similarly to the feature removal template for

ompositional CKs, we give support for the products that do not

ave the removed feature. Therefore, S is defined in the same way.

The O feature is removed from the initial FM F . Similarly to its

ompositional version, assets implementing the O feature should

e removed from the product line. In this case, since we are able

o transform assets, we can consider the use of preprocessing di-

ectives to implement features. So, instead of a single file imple-

enting the entire O feature, we have a code snippet c inside the

 asset where O is implemented. In the CK, the x tag activates the

 code that implements O . Thus, in the new AM, this tag is not

resent, neither is the c code. Two lines are removed from the ini-

ial CK. Both have an expression e , which, if true, implies the pres-

nce of O . For this reason, both lines should be removed, otherwise

e could have an ill-formed CK, that refers to features that do not

xist anymore. The first transformation in the first line is tag x ,

hich activates this tag. The transformation preprocess n generates

 new asset considering activated tags. As a consequence, since the

 tag is previously activated, c is included. If x had not been acti-

ated, c would not be included. There are three additional condi-

ions in the template illustrated in Fig. 6 . The first one is to make

ure that O only appears in e . This is essential to guarantee that

he remaining expressions in the resulting CK will not refer to a

eature that was already removed. We also require the x tag to

ot appear in other CK lines. As this tag activates the code related

o the removed feature O , it should also be removed. The first CK

ine refers to x , and it is also removed. Since we are assuming that

 refers to the removed feature, it makes no sense to allow that

ther CK lines refer to x . This could imply in a ill-formed product

ine because after removing O , there would still be a tag referring
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Fig. 6. Remove feature partial refinement transformational template. 
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Fig. 7. Change asset partial refinement template. 
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o O . Finally, we need a well-formedness condition. We do not have

ontrol over the products that are not in the scope of S , since these

roducts were affected by the feature removal. Consequently, we

o not know if these products would still compile successfully, for

xample. We then need to establish that they must be well-formed

fter the change. 

We could also have another template considering the use of the

elect transformation, which would be similar to the compositional

ne, as select transformations do not really transform assets, but

imply select them. For this reason, we only present a template

ealing with ifdefs . We do not present the formalisation of the Re-

ove feature transformational template, but it is similar to the

emove feature compositional template formalisation illustrated

n Section 4.1 . Nevertheless, the languages used to represent the

K and assets are different because we allow CKs with transfor-

ations and ifdef blocks. Consequently, we cannot use the com-

ositional template here. Moreover, we prove the template shown

n Fig. 6 by induction over the CK, since we deal with a recursive

emantics function. In contrast, the compositional template proof

equires no induction. 

.3. General templates 

In this section, we present templates which are CK language

ndependent. The previously introduced templates are not general

ecause they specify concrete CK changes. So, we need to repre-

ent these changes with concrete languages. 

In the following scenarios, the CK does not change; only the

M or the AM. So, we can abstract from the CK structure. Conse-

uently, these templates are compatible with any CK notation, in-

luding both compositional and transformational CKs. We first in-

roduce the Change asset template, which deals with changes only

o implementation files. This template is a particular case of the

M partial refinement compositionality introduced in Section 3.2.2 .

oreover, we also have templates to deal with changes only to the

M. These would be particular cases of the FM compositionality

see Section 3.2.1 ). 

hange asset 

Developers modify source files in many contexts, such as when

xing bugs or implementing new features. In such situations, one

ossibly does not desire to preserve behaviour. Thus, this is often

 partially safe evolution scenario, since products that contain the

hanged asset might not preserve behaviour. Therefore, we give re-

nement guarantees for the other products, which are the ones
hat do not have the changed assets. We define a template that

atches this scenario in Fig. 7 . 

To specify S for this case, we use another restriction operator.

or an arbitrary product line ( F, A, K ), and set of asset names ns ,

e use ( F, A, K ) �ns to denote the subset of F configurations whose

roducts do not contain assets from ns . Hence, in Fig. 7 , S is de-

ned as ( F, A, K ) �{ n }, which is the subset of configurations whose

eatures are not implemented by the asset named n , which in this

ase is the a asset. Since products containing a ′ are possibly not re-

ned, we cannot give any guarantees for them. There is also a well-

ormedness condition. Since we do not know which changes were

erformed to a , we need to demand well-formedness for products

ontaining a ′ . 
This template assumes that both product lines have the same

 and K . More precisely, only the asset a is changed to a ′ . Thus,

nly the asset content is modified, not the asset name, which is

he same for the initial and new lines ( n ). It could be the case

hat many assets change in a single evolution scenario, and we

ould still support developers because this is the same as applying

he Change Asset template several times. Our transitivity property

elps in such situations. Although this template does not capture

ituations where the FM and CK change as well, one could obtain

his effect by combining templates. The Change asset template can

e used with the Change CK line template (which is introduced in

hat follows), for instance. Thus, developers could not only change

ssets, but also change their reference in the CK. As explained in

heorem 2 , the guarantee is for the intersection of the products

efined in both steps and this can be automatically calculated, as

e define S for both templates. 

The Change asset template also captures safe evolution scenar-

os. When one refines an asset, this template also matches. How-
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Fig. 9. Move feature to its sibling partial refinement template. 
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ever, it would give less support than possible since we assume that

the asset is being changed in a non behaviour-preserving way. The

Refine asset template ( Neves et al., 2015 ) is more appropriate in

this situation because it assumes that the asset changes and its be-

haviour is preserved, thus product line is safely evolved and gives

guarantees for all products. In contrast, if the change impacts the

product line behaviour, the Refine asset template gives no support

and developers should rather make use of the Change asset tem-

plate. 

Transform Optional to Mandatory Feature 

Feature types ( mandatory, optional, alternative and or ) may

change during the evolution process. Some of these changes are re-

finements and others are not. For example, transforming a manda-

tory feature into an optional one is often a refinement, since the

evolved product line would have more configurations than before,

but we would still have the existing products, supporting existing

users. This situation is addressed by previous work ( Neves et al.,

2015 ). 

On the other hand, the opposite transformation, transforming

an optional feature into mandatory, is often not a refinement. In

this case, every product containing the parent of the transformed

feature will also have the changed feature. Thus we would not be

able to generate products without the changed feature but with its

parent. For this reason, some users would not be supported, but

others can be because products already containing the changed

feature would be unaffected. This scenario is illustrated in Fig. 8 .

We give support for the original products that have O , because the

only change applied to the initial product line was that O becomes

mandatory. Furthermore, products without P are not affected, be-

cause they remain without O , as it is impossible to have O without

having P 

We have a condition in the template ( Fig. 8 ) to guarantee that

O can only be selected through the P selection, so there are no

formula changing this condition. We state that we must be able

to deduce the equation O ⇒ P from F . So, it should not be possible

to have O without P in the Transform optional to mandatory

feature template. 

For this evolution scenario, we define S as the set of configu-

rations that belong to the semantics of F , and satisfy the formula

O ∨ ¬P . This is expressed with the filter operator �, which takes a FM

F and a feature expression e and yields all configurations in F that

satisfy e . This operator is the opposite of the restriction operator �.
We do not have any well-formedness condition for this template.

This is not necessary because, in this particular case, we are able to

prove that the resulting product line is well-formed. As there are

no changes to assets in this case, we know that products remain

well-formed. Moreover, there are no new products; it is just the

case that some of the initial products do not exist anymore. Thus,
Fig. 8. Transform optional to mandatory feature partial refinement template. 
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e had essentially to prove that all configurations belonging to F ′ 
emantics, also belong to F semantics. 

ove Feature 

Finally, we also consider changes to the FM regarding feature

ependencies. During the evolution process, developers may want

o move features in the FM. For example, a possible scenario is il-

ustrated in Fig. 9 . We have an initial FM F that has at least three

eatures: P, Q and O . Feature P is the parent of Q and O . A change

s performed and we then obtain F ′ , where O is now Q ’s descen-

ant. In this scenario, product configurations from the initial prod-

ct line that do not have Q and have O are nonexistent in the re-

ulting product line. In contrast, configurations that have O and Q

o not suffer any impact, neither the ones that have P but do not

ave O . So, we define S as the set of configurations that belong to

 semantics and do not satisfy the expression ¬Q ∧ O . 

Besides that, the FM F , including cross-tree-constraints, should

atisfy two expressions: O ⇒ P and Q ⇒ P . This is necessary to guar-

ntee that the FM formulae are not changing the relation between

he features. So, we should be able to select O only if P is selected

nd this must hold for the entire FM. The same happens to Q and

 . Consequently, both feature expressions should hold for the con-

traints of both FMs. 

We do not specify any feature type in this template. This means

hat it applies no matter the types of features P, Q and O . However,

epending on their types, we could have variations of this tem-

late that provide guarantees to different sets of products. For ex-

mple, in two variations S is equal to all valid configurations, and,

s a consequence, we would have refinement. This happens when

nly Q is mandatory, and when the three features are mandatory.

n both cases, all products would have Q , so the expression ¬Q ∧ O ,

hich should be satisfied by the configurations that are not re-

ned, would not hold for any product. In any other scenario, S is

ot equal to F semantics. For instance, if all features are optional,

roducts containing only P and O would not be generated in the

esulting product line, as Q would need to be present, since it is

he ascendant of O in F ′ . 
We have just discussed a possible product line evolution sce-

ario that consists of moving a feature in the FM, with the effect of

hanging feature dependencies. Nevertheless, as the FM structure

s a tree, there are several potential scenarios of moving features

n the scope of the tree. Although we have shown one possible

ove feature transformation, there are several other possibilities.

he FM tree can be large, and features may be moved to a place

ar from its origin. These are just examples and any case that does

ot match these templates needs to be analysed separately. More-

ver, for each situation the set of refined configurations S may vary.
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or this reason, we do not have a single template to represent all

ossible move feature scenarios. 

.4. Discussion 

We derived the templates by adapting a catalogue of safe evo-

ution templates ( Borba et al., 2012; Neves et al., 2015 ) for situa-

ions where not all products are refined by products in the evolved

roduct line. For instance, the Change Asset template in Fig. 7 es-

entially adapts the Refine Asset Neves et al. (2015) template by

ropping the precondition that the new asset a ′ must refine a . This

ay we allow any kind of change to a , but capture change impact

y precisely defining S . The set S of configurations refined depends

n each scenario. For instance, if we change the behaviour of an

sset present in every product, S can be the empty set. This would

ean that we cannot provide any guarantee. This is not an ideal

ituation, but we are not aware of how to avoid it. Eventually, de-

elopers need to perform changes that affect all products. We re-

isit this topic on Section 6 . 

Verifying completeness of the templates and proposing a mini-

al set are part of our future work. We would also possibly need

ore templates, but we already cover several situations, like fea-

ure removals, CK line additions and removals, changes to the im-

lementation, among others. If it is not possible to obtain absolute

ompleteness, we could then establish a relative completeness by

howing that the templates are expressive enough to transform an

rbitrary product line to a reduced normal form. 

Besides the introduced templates, we have others that are not

resented here for brevity and can be found in our online appendix

 Partial refinement theory website ). For this reason, we show the

ull list of templates in Table 1 . In addition to the Remove Feature

nd the general templates, we also have templates to deal with

hanges to the CK that are also formalised in both CK composi-

ional and transformational notations. Finally, we have templates

o cover asset removals and additions that were implemented in

oth transformational and compositional theories. 

We do not present proofs of the general templates, but they are

vailable in our online appendix ( Partial refinement theory web-

ite ). The templates that deal with changes to the FM only are rel-

tively simple to prove, as they do not deal with any change to the

mplementation, so we basically need to prove that the set S of re-

ned product configurations can be obtained from the initial and

volved FM semantics. We also guarantee that the evolved FM is

ell-formed for these templates. We do not need to deal with CK

emantics and AM peculiarities. Regarding the Change asset tem-

late, it is a particular case of the AM partial refinement composi-

ionality (see Section 3.2.2 ). Thus, we make use of the existing AM

artial refinement notion to prove this template. 

In general, our aim is to give support for several product line

anguages to increase the partial refinement concept expressive-

ess. When a particular product line element is changed, we de-

ail such element using a particular language and try to understand

hich languages are possible to use. For the CK, we show that both
Table 1 

Full template list. 

Template Compositional Transformational General 

Remove Feature 
√ √ 

- 

Add CK Lines 
√ √ 

- 

Remove CK Lines 
√ √ 

- 

Change CK Line 
√ √ 

- 

Add Assets 
√ √ 

- 

Remove Assets 
√ √ 

- 

Change Asset - - 
√ 

Optional to Mandatory - - 
√ 

Move Feature - - 
√ 

 

 

 

 

 

 

 

 

 

 

 

ompositional and transformational notations are compatible with

he templates. Otherwise, we specify and prove the template in a

ore general level assuming that the elements are black boxes and

hey can thus be of any notation. 

. PVS encoding 

We present a partial refinement theory in Section 3 with defi-

itions, properties and theorems about partial refinement of prod-

ct lines, allowing reasoning over partially safe evolution of prod-

ct lines. To guarantee soundness, we used a proof assistant to

void human mistakes in manual proofs. This way, we can be con-

dent that our proofs are correct, and the way that theories and

roofs were mechanized also made the process less time consum-

ng, as manual proofs could take much longer. We choose to use

VS, which provides a specification language, a type checker and

n interactive theorem prover, mainly due to building the partial

efinement theory on top of the refinement theory, which has been

echanized in PVS on previous works ( Borba et al., 2012; Teixeira

t al., 2015a ). 

To understand how the theory is encoded in PVS and relate to

he product line refinement theory, we discuss the impact and the

xtension of the product line refinement theory in PVS ( Partial re-

nement theory website ). In Fig. 10 , we show the dependencies

mong theories (PVS modules) and their hierarchy. Although we do

ot show the entire hierarchy here, all PVS files and proofs can be

ound online ( Partial refinement theory website ). The new theories

reated in this work due to the inclusion of partial refinement are

ighlighted in light grey colour. As the partial refinement concept

uilds on the existing product line theory and concepts (white PVS

odules), all assumptions existing there, like asset set refinement

reorder ( Borba et al., 2012 ), are also required here. On top of that,

e have extra specific assumptions for partial refinement, like the

xioms presented in Section 3.2.2 . We prove all new properties to

uarantee that they are valid and consistent with the existing the-

ry. In the remainder of this section, we explain each theory in

ore detail. Some of them deal with general notions of FM, AM

nd CK ( PartialRefBasics, PartialRefDefault, PartialRefWeaker, Partial-

efinement and PartialAMCompositionality ), and ideally they would

e valid with any product line definition that has the three ele-

ents. These five theories are parameterised with respect to FM,

sset, Asset Name and CK types, and also FM and CK semantics

unctions. Thus, one can instantiate them with concrete languages

or the three product line elements and implement semantics func-

ions. One needs to provide concrete notions, and semantics func-

ions for the FM and CK. The other two theories are specific for

ompositional and transformational CK, respectively: 

• PartialRefBasics : in this theory, partial refinement and weaker

equivalence notions for the FM, AM and CK are defined. It im-

ports the preexisting refinement theory that abstractly define

these basic types representing the three main elements of the

product line ( Definition 5, Definition 7 and Definition 10 ). 
• PartialRefDefault : this theory contains the main partial re-

finement definition ( Definition 4 ). It uses PartialRefBasics , as

we analyse whether the transformations applied to the FM

and the CK in separate lead to product line partial refine-

ment. Furthermore, we also reason about refinement and par-

tial refinement transformations being applied consecutively. So,

Theorems 11 and 12 are defined in this theory. 
• PartialRefWeaker : this is analogous to PartialRefDefault , but

here we deal with the weaker partial refinement notion

( Definition 11 ). 
• PartialRefinement : in this theory, we relate the previously pre-

sented definitions (default and weaker). Basically, here we es-

tablish that if the function f in the weaker definition is the
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Fig. 10. PVS partial refinement theory. 
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identity function, this definition is equivalent to the relation in

Definition 4 . 
• PartialAMCompositionality : as we discussed in Section 3.2.2 ,

we assume the existence of an evaluation function to reason

about AM compositionality. For this reason, this is expressed

in a separate theory, as we do not need the evaluation function

for the other concepts. We do not allow the evaluation function

to be arbitrarily defined. As discussed in Section 3.2.2 , it must

obey a set of constraints, like not generating assets not present

in the AM of the product line being evaluated. 
• PartialAMRefInstComp : this is an instantiation of PartialAM-

Compositionality , where we deal with the general CK notation.

This theory is essential to certify that assumptions made re-

garding an arbitrary CK would be valid for the compositional

CK. So, we prove that Axioms 2,1 and 3 also hold for composi-

tional CKs. 
• PartialAMRefInstTrans : analogous to PartialAMRefInstComp ,

but deals with transformational CKs. 

In Fig. 10 , we also show the theories that specify templates. We

highlight in black colour (white font) the template theories. As we

discussed, we have three template categories and they vary mainly

according to the CK notation used. Consequently, we have three

different tem plate theories. For each template developers should

obey the syntactic and conditions predicates like the ones pre-

sented for the Remove Feature template in Section 4.1 . We also

determine, for each case, the S set of refined product configura-

tions. In the following, we explain each template theory for partial

refinement: 

• PartialRefTemplatesComp : this theory comprises the templates

proposed in Section 4.1 . It uses the concrete notions for FM

( FeatureModel theory) and CK ( CKComp theory). Since we are

defining partial refinement templates, these theories all import

the PartialRefinement theory. 
• PartialRefTemplatesTrans : this is analogous to PartialRefTem-

platesComp , but it deals with transformational CKs and uses

the CKtrans theory instead of CKComp . 
• PartialRefTemplatesFM : this theory corresponds to the tem-

plates presented in Section 4.3 , except the Change Asset tem-

plate that is specified together with the AM compositionality

theory. This template is in a separate place because it assumes

an eval function (see Section 3.2.2 ), which is part of the CK se-

mantics. All the other templates deal with changes to the FM

only, so all specific cases of the FM weaker equivalence com-

positionality are specified here. These templates assume a spe-

cific notation for the FM, that is structured as a tree. So, we use

the concrete FM theory and the intermediate CK theory CKint ,

since the templates do not specify any CK language and would

be compatible with any concrete CK that is a instantiation of

CKint . 

emplates Formalisation 

All of the templates presented in this paper were encoded and

roved in the PVS system. However, we do not present all spec-

fications and proofs here, but all PVS files are available online

 Partial refinement theory website ). In this section, to illustrate our

ormalisation approach, we present the Remove feature template

ormalisation. The template we formalise here is actually more

eneral than the template presented in Fig. 5 , since it allows more

han one line of the CK to be removed and also more than one

sset from the AM. We illustrate as if the feature appears only in

ne CK line and is implemented by one implementation artefact

ust to make it more readable. To specify partially safe templates,

e follow the same strategy found in previous works ( Gheyi et al.,

005; Borba et al., 2012; Neves et al., 2015; Teixeira et al., 2015a ).

o, we first define the syntax and conditions predicates to encode

he information present in the template. All syntactic similarities

nd differences regarding the initial and final product lines form

he syntax predicate. In the Remove feature template, the three

roduct line elements are presented in detail, so we define syntac-

ic rules for all of them. Preconditions like well-formedness rules

re specified with the conditions predicate. 
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6 
To specify the syntax predicate, we make use of preex-

sting functions defined for concrete FM and CK PVS en-

oding. For example, the FM we are dealing with has a

et of features and a set of formulae. So, for the Remove

eature template, we state that F ′ ( fm 2 in the formalisa-

ion) formulae are all in F ( fm 1 in the formalisation), ex-

ept those that have O . This is formalised as f ormulae ( f m 2) =
emov e (O, f ormulae ( f m 1)) , and remove ( O, formulae ( fm 1)) expands

o { f : Formulae | f ∈ formulae ( fm 1) ∧ O �∈ names ( f ))}. It would not make

ense to allow these formulae to be part of F ′ , since the O feature

s removed. So, this guarantees that the O feature does not appear

n any formula in F . Besides that, we also require that features from

 

′ are exactly the ones from F , except for O . As Fig. 5 shows, P and

 need to be features from the initial FM. As a consequence of the

econd condition, P is also in F ′ . 
We also describe the AMs and CKs. The removed feature does

ot need to be implemented by one asset only, nor be present in

nly one expression in the CK. We assume that several items in the

K and in the AM may be removed, and we represent these two

ets with the its and pairs variables, respectively. Thus, the specifi-

ation is actually more general than the template shown in Fig. 5 .

asically, the initial AM must be an extension of the final one,

ith the AM pairs . The override � operator can be simplified to

pairs ∪ (am 2 − dom (pairs )) , where am 2 − dom (pairs ) is the set of

airs that belong to am 2 whose names are not in dom ( pairs ). The

K is represented as a set of items in the compositional language,

o we say that K has every item from K 

′ and also the removed

tems in its . Finally, we also need to certify that every configura-

ion satisfies the O ⇒ P expression, as this express the parenthood

xpressed in the FM. 

yntax ( f m 1 , f m 2 , am 1 , am 2 , ck 1 , ck 2 , P, O, its, pairs ) : 

bool = f ormulae ( f m 2) = remov e (O, f ormulae ( f m 1)) ∧ 

f eatures ( f m 2) = remov e (O, f eatures ( f m 1)) ∧ 

P ∈ f eatures ( f m 1) ∧ 

O ∈ f eatures ( f m 1) ∧ 

am 1 = am 2 � pairs ∧ 

ck 1 = ck 2 ∪ its ∧ 

∀ c ∈ [[ f m 1]] · sat(O ⇒ P, c) 

We also define preconditions. The first one is to require S to

e F �O , which represents the set of configurations that are in F se-

antics, but do not satisfy O . It is also necessary to make sure that

very expression from its implies O , which is represented by the

 

′ variable in Fig. 5 . Regarding the CK, it is also required that O

oes not appear in other CK lines. So, we establish that configura-

ions from the initial FM satisfy expressions from its if and only if

hey have the feature O . The second condition is related to well-

ormedness. Developers must be sure that initial products contain-

ng O implementation remain well-formed. Finally, we have a con-

ition regarding its and pairs . We require that the remaining fea-

ures do not have their implementation removed, by guaranteeing

hat if an item does not belong to its , its respective assets, obtained

y assets ( item ), are not in pairs , and consequently not removed. 

onditions ( f m 1 , S, its, pairs, P, O, ck, ck 2 , am 2) : bool = 

S = F � O ∧ 

∀ c ∈ [[ f m 1 ]] ·
∀ exp ∈ exps (ck ) ·

sat(exp, c) ⇒ exp ∈ exps (its ) ⇔ sat(O, c) ∧ 

c / ∈ S ⇒ w f ([[ ck 2]] am 2 
c ) ∧ 

∀ item ∈ c k · item / ∈ its ⇒ 

∀ an ∈ assets (item ) · an / ∈ dom (pairs ) 
The template is already encoded, but we do not prove it di-

ectly. We define a strategy for an step-wise proof. First, we prove

hat configurations in S do not satisfy any expression in its . This

uarantees that, when evaluating the CK, items associated with the

 feature are not included, and consequently artefacts that imple-

ent O are not also present. This is specified in Lemma 1 . The

valCK function yields CK items whose feature expressions are sat-

sfied in the configuration c . 

emma 1 (Items from its are not included) . For product lines L =
(F , A, K) and L ′ = (F ′ , A 

′ , K 

′ ) , a set of configurations S, a set of items

ts, an AM pairs and features P and O, if syntax ( F, F ′ , A, A 

′ , K, K 

′ , P, O,

ts, pairs) and conditions ( F, its, pairs, P, O, K) hold, then 

 c ∈ S · ∀ item ∈ e v alCK(K, c) · item / ∈ its 

We also introduce Lemma 2 , to establish that, for products in S ,

ssets resulting from the evaluation of the initial CK do not belong

o the removed assets from pairs (note that eval ( K, c ) yields all as-

et names mapped to feature expressions that are satisfied accord-

ng to the configuration c ). This means that assets implementing

he removed feature are not present in the evolved CK. This lemma

s related to Lemma 1 , where we show that the evolved CK does

ot have any expression involving the removed feature. Although

e do not present in detail here, all definitions used in this proof

an be found in our Git repository. 6 

emma 2 (Assets from. pairs are not included) For product lines

 = (F , A, K) and L ′ = (F ′ , A 

′ , K 

′ ) , a set of configurations S, a set of

tems its, an AM pairs and features P and O, if syntax ( F, F ′ , A, A 

′ , K,

 

′ , P, O, its, pairs) and conditions ( F, its, pairs, P, O, K) hold, then 

 c ∈ S · ∀ an ∈ e v al(K, c) · an / ∈ dom (pairs ) 

We are now able to prove that removing a feature, given the

yntax and conditions predicates previously established, leads to

roduct line partial refinement. This is formalised in Theorem 13 .

ssentially, when a feature is entirely removed from a product line,

nd no elements regarding the remaining features are removed, we

ay that the evolved product line partially refines the initial one for

onfigurations that do not have the removed feature. 

heorem 13 (Removing a feature is a partial refinement) . For prod-

ct lines L = (F , A, K) and L ′ = (F ′ , A 

′ , K 

′ ) , a set of configurations S, a

et of items its, an AM pairs and features P and O, if syntax ( F, F ′ , A,

 

′ , K, K 

′ , P, O, its, pairs) and conditions ( F, its, pairs, P, O, K) hold and

 c / ∈ S · w f ([[ K 

′ ]] A ′ c ) , then L � S L 
′ , where L ′ = (F ′ , A 

′ , K 

′ ) . 

roof. We have to prove that L � S L 
′ , which, according to

efinition 4 , expands to 

 ⊆ [[ F ]] ∧ S ⊆ [[ F ′ ]] (27)

nd 

 c ∈ S · [[ K]] A c � [[ K 

′ ]] A ′ c (28)

o prove Predicate ( 27 ), we first expand the restriction op-

rator � in our assumption about S , which leads us to

 c ∈ S · c ∈ [[ F ]] ∧ ¬sat ( O, c ). So, we can conclude that S ⊆[[ F ]]. To

rove that S ⊆[[ F ′ ]], we expand the FM semantics function [[ _ ]] ,

nd we have to prove that all features and formulae in F ′ 
elong to F . [[ F ′ ]] expands to { c : Configuration | satImpConsts ( F ′ ,
 ) ∧ satExpConsts ( F ′ , c )}. Expanding these two predicates, we have to

rove that: 

 c ∈ S · ∀ (n : Name ) ∈ c · n ∈ f eatures (F ′ ) (29)

nd 

 c ∈ S · ∀ ( f : F ormula ) ∈ f ormulae (F ′ ) · sat( f, c) (30)
http://github.com/spgroup/theory- pl- refinement/tree/dev . 

http://github.com/spgroup/theory-pl-refinement/tree/dev
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From S definition, we have that S ⊆[[ F ]], which amounts to

∀ c ∈ S · ∀ ( n : Name ) ∈ c · n ∈ features ( F ). So, to prove Predicate ( 29 ), we

need to prove that n cannot be O . Otherwise, since it belongs to

features ( F ), it will also be in features ( F ′ ). Also from S definition,

we conclude that c does not satisfy O . So, O cannot be in c ’s

names. Predicate ( 30 ) also holds because it holds for formulae ( F )

and formulae ( F ′ ) ⊆formulae ( F ). 

We then need to prove Predicate ( 28 ). Assuming an arbitrary

c ∈ S and expanding the CK semantics function, this simplifies to

A < eval ( K, c ) > � A 

′ < eval ( K 

′ , c ) > . The difference between K and K 

′
is the set of items ( its ) that belong to K but not to K 

′ . Expanding

eval ( K, c ) results in assets ( evalCK ( K, c )). By using Lemma 1 , we con-

clude that all CK items resulting from evalCK ( K, c ) do not belong

to its . As the other items, except its , are equal, K and K 

′ evaluation

results in the same items for configurations in S . So, we have that

assets (e v alCK(K, c)) = assets (e v alCK(K 

′ , c)) . 
The difference between A and A 

′ refers to pairs . In Lemma 2 ,

we show that there are no assets from pairs resulting from the

evaluation of K . So, assets obtained by the image in A and A 

′ 
are the same and do not refer to pairs , so it makes no difference

in obtaining the image in A and A 

′ , which is formally expressed

as A < e v al(K, c) > = A 

′ < e v al(K, c) > . Given that [[ K]] A c = [[ K 

′ ]] A ′ c 

for an arbitrary c in S , the proof follows by asset set reflexivity

( Borba et al., 2012 ). 

According to previous work ( Borba et al., 2012 ), an FM is well-

formed if its formulas only refer to its features. If features not

present in the FM are referred, the FM is not well-formed. We are

able to prove that the final FM is well-formed because, since the

initial FM is well-formed, and the only transformation is removing

a feature, F ′ is also well-formed as we remove the formulas that re-

fer to the removed features. Regarding the final product line well-

formedness, we need to prove that all products are well-formed,

according to the product line definition. There are two scenarios

to be considered: if a product is in the scope of S , we guarantee

its well-formedness because it is equal to an initial product, as we

have just proved in this theorem. For products that do not belong

to S , we make use of the condition requiring that all products in L ′ 
which are not in S should be well-formed. So, we are able to prove

that L ′ is well-formed. �

6. Evaluation 

Although we expect our partially safe evolution templates could

be useful in a number of situations, it is important to gather em-

pirical evidence so we can better understand how often they could

be applied in practice. To do that, we perform a quantitative retro-

spective study by analysing two product lines, Linux 7 and Soletta. 8 

Both projects are active on GitHub, the variability model is written

in Kconfig, Makefiles are used to map features to their implemen-

tation and C is the main programming language used for source

code files. Linux is a large and highly variable system that has been

used in previous works ( Israeli and Feitelson, 2010; Adams et al.,

2008; Dintzner et al., 2017 ). Soletta is smaller and more recent, so

we also chose to analyse this system to understand whether char-

acteristics such as project size and number of commits have any

influence in our analysis. 

We try to find scenarios that match our templates by analysing

commits from the two projects. In this section, we detail the data

extraction process in Section 6.1 , show the results for each tem-

plate in Section 6.2 , and discuss threats to validity in Section 6.3 .

RQ: How often could partially
7 Linux Kernel repository available at http://github.com/torvalds/linux . 
8 Soletta project website: http://solettaproject.org/ . 
he purpose of our study is to discover whether the proposed tem-

lates could be frequently applicable in a product line develop-

ent context. We would like to answer the following question. 

 evolution templates be applicable in product line projects? 

In order to answer this question, we automatically analyse com-

its from the Linux and Soletta projects, where each evolution

cenario is composed of a commit pair: the initial and evolved

roduct lines are the ones in two consecutive commits. We mea-

ure the number of occurrences of the proposed templates, since

hey represent partially safe evolution situations. 

.1. Setup 

We use the FEVER tool ( Dintzner et al., 2017 ) to identify tem-

late occurrence. 9 This tool, developed by Dintzner et al., is able

o analyse commits from projects that use the Linux notation.

EVER takes a set of commits as input and collects information

rom them. Then, the differences from each pair of consecutive

ommits are processed and the resulting information is stored

n a Neo4j database. 10 The tool discovers which Linux elements,

uch as the variability model, were changed in evolution sce-

arios. Additionally, changed files are automatically classified into

ource and non-source. To find occurrences of our templates, we

uery the database populated by FEVER to filter evolution sce-

arios by expressing the conditions for each template, such as

hether they affect the FM. For instance, in the Change Asset tem-

late ( Section 4.3 ), we ensure that only the code is modified. Thus,

here are no changes to the FM and CK. 

We manually check all evolution scenarios returned by the

ueries (except those representing changes only to the implemen-

ation, as the number is extremely high) to make sure they really

atch the templates, and also to reduce false positives. The tool

an also have bugs, so the manual analysis is also important to

itigate the tool imprecision. To reduce false positives in Change

sset instances, we run a complementary analysis. Altogether, we

nalysed 67,310 evolution scenarios of the Linux Kernel from the

atabase we had access to, and this corresponds to all commits

etween Linux versions 3.11 and 3.16. The first commit was per-

ormed on September 2 nd of 2013 and the last one was on Au-

ust 3 rd of 2014, so this comprises roughly one year of develop-

ent. We try to match each evolution scenario with one of the

emplates, based on their conditions, as explained in the following.

Remove Feature : scenarios that modify all three elements of

he product line, removing elements. These three modifications

ust be correlated, as illustrated in Section 4.1 . Thus, the removed

appings need to be associated with the removed feature in the

M. Similarly, the removed assets in the CK need also to be ex-

luded from the implementation. These rules are detailed in Listing

 , using Neo4j query language. In the database, the MappingEdit

nd FeatureEdit nodes represent changes to the CK and FM, respec-

ively. An ArtefactEdit is any file change. From the MATCH clause,

e have all commits in which the CK and source code are both

hanged. We then have the WHERE clause to establish extra con-

itions. For instance, the first condition is that this commit should

ffect the FM as well, and the change must be a removal. More-

ver, the feature name in the FM needs to be the same name as

he edited feature in the mapping change (CK) (Line 3). As the

hree parts are affected, we also state that there should be CK

emovals (Line 5). It would make no sense to allow source code

rtefact additions in a feature removal scenario, so we filter these

ases (Line 7). We also verify if changes in the implementation are
9 http://github.com/NZR/SPLR-FEVER-Tool . 
10 Neo4j website http://neo4j.com . 

http://github.com/torvalds/linux
http://solettaproject.org/
http://github.com/NZR/SPLR-FEVER-Tool
http://neo4j.com
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Listing 4. Remove feature Neo4j query. 
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9  
elated to changes in the mapping (Line 10). All distinct commits

beying these rules are then returned. In the Remove Feature tem-

late, we have a condition regarding well-formedness that, in our

nalysis, we assume to be true in every scenario. 

This query is subject to false positives. Although the exact map-

ing between features and artefacts in Makefiles can be complex,

EVER relates each mapping change to one feature only, which

ay lead to imprecision. Additionally, features can be delimited

ith #ifdef annotations. So, when removing a feature, one can

emove only an #ifdef block, without removing an entire source

ode file. Although we cover examples that deal with transforma-

ional CKs, this increases imprecision, since we cannot filter if only

n #ifdef has been removed. The FEVER tool is not able to detect

uch change. To deal with such false positives, we perform manual

nalysis to guarantee their absence. 

False negatives may arise due to special cases. For instance, the

emoved file not necessarily has the same name of the mapping

arget removed in the CK. Thus, this evolution scenario would not

e found with this query because the last condition may not hold.

dditionally, we also do not find scenarios that are compositions

f feature removals and other changes. For instance, one could re-

ove a feature and add a new one in the same commit. Errors

n the data set can also lead to false negatives. We do not show

ueries for the other templates, but they follow a similar approach

nd are available in our online appendix ( Partial refinement theory

ebsite ). We should remind that false negatives do not affect our

esults, as they would actually increase our templates occurrence. 

Change Asset : we classified an evolution scenario as a change

sset instance when only the implementation changed. We filter

ommits that have at least one source file changed. It was also

ecessary to establish that the commit had no added or removed

ource files. Therefore, we only capture cases where the change is

n source code. If only a non-code file is changed, such as a .txt file,

e do not consider it a change asset instance. 

Add Assets and Remove Assets : we classify evolution scenar-

os as instances of these templates when only the CK and imple-

entation change. In the former, both changes must be additions.

he files added to the implementation should be new and of type

ource , according to FEVER. For the Remove Assets template, the

uery is analogous. So, we only allow removals in the CK and im-

lementation. Source files should be entirely removed and CK lines

ust also be excluded. Moreover, we have a similar condition to

he last one in Listing 4 to guarantee that the changes are related.

evelopers might remove Makefile mappings and source files in-

ependently. Thus, we check whether the source file names appear

n the affected CK lines. We do not consider any case in which the

M changes. This would actually consist in a feature addition or

emoval. 
m  
We are not aware of false positives that may arise due to the

dd Assets and Remove Assets queries. Regarding false negatives,

e do not find instances in which an added file has not exactly

he same name of the added CK line. However, changing such con-

ition would probably increase the false positives number. 

Change CK Line , Add CK Line and Remove CK Lines : we identify

hese templates with only one query because they are very simi-

ar and we noticed that in some cases an evolution scenario was

n instance of the Change CK Line ; template, but the Git diff algo-

ithm was showing it as a removal followed by an addition. Since

he tool relies on this classification, we could have non-precise re-

ults, so we preferred to detect mapping changes and check manu-

lly which templates match the respective evolution scenario. An-

ther reason is that the number of instances is considerably small

or these templates. For all of them, we required that the im-

lementation and FM elements must remain unchanged. We also

dentified the other templates in a similar way, and the results are

resented next. 

We can have false positives in these instances because we are

ltering any mapping change. So, a number of them might not be

f our interest. We could filter mapping additions, removals and

odifications separately, but the FEVER tool uses the Git diff algo-

ithm, which has an imprecise classification. We prefer to filter all

hanges and manually classify according to their types. We are not

ware of false negatives due to the query, but they can occur due

o data set problems. 

.2. Results 

In this section, we discuss the results from the analysis of the

inux and Soletta systems. Linux and Soletta are similar with re-

pect to the notation used for its elements, but vary in size and

aturity level. These differences reflect in our results. For each

roject, we inform how often our templates could be applied in

volution scenarios. We also discuss threats to the validity of our

esults. 

Although we classify templates into compositional and transfor-

ational in Section 4 , both systems use a transformational CK no-

ion. For instance, some feature removals actually affect #ifdef an-

otations and our compositional template is not compatible with

uch structure. So, precisely, these would rather match the trans-

ormational and general templates. 

.2.1. Linux kernel 

We present the numbers of each template in Table 2 . The

hange Asset template could be often applied, matching almost

0% of the evolution analysed scenarios. By identifying com-

its that actually change only white spaces and permissions, we
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Table 2 

Template occurrence - Linux Kernel. 

Template Query returned Excluded Imprecision Source Remaining 

Change Asset (and possibly Refine Asset ) 55,345 780 Query 54,565 (89.4%) 

Add Assets 181 13 Tool 168 (0.27%) 

Remove Assets 17 1 Tool 16 (0.02%) 

Change CK Line 18 0 Query 18 (0.02%) 

Add CK Lines 9 0 Query 9 (0.01%) 

Remove CK Lines 12 0 Query 12 (0.02%) 

Remove Feature 93 25 Query 68 (0.11%) 

Table 3 

Template occurrence summary - Linux Kernel. 

Commit type Number 

Non-merge 67310 

Merge 5413 

Analysed 61897 

Match our templates 55,676 (89.94%) 

Not match any template 6221 (10.06%) 
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11 Change Asset example: http://github.com/torvalds/linux/commit/2627b7e15c . 

Jul 8, 2014; version v3.16-rc5. 
12 Lucene website: http://lucene.apache.org/ . 
exclude 780 scenarios. We try to reduce the query imprecision

by analysing commit messages, which suggest that partial refine-

ment occur more frequently than refinement scenarios. The other

templates had considerably lower numbers. The Add Assets query

returned 181 instances, but, only 168 were considered, since the

other 13 do not match the template due to data set problems

which will be explained later. Similarly, the Remove Assets tem-

plate had 16 instances only. The templates that deal with changes

to the CK ( Change CK Line , Add CK Lines and Remove CK Lines )

had 18, 9 and 12 instances. Finally, the Remove Feature query re-

turned 93 instances and after manual analysis 68 remain valid. We

believe that there are no problems due to data set in this template,

but the query is not precise enough. 

The numbers in Table 2 are lower bounds of the cases we could

confirm. We provide a summary of our analysis in Table 3 . From

the 67,310 commits, 5413 are merge commits, which are discarded

by the tool because they correspond to integration, not evolution,

scenarios. Hence, we could give support for 89.94% of the cases

altogether, as shown in Table 3 . 

There are, in fact, 6221 instances in the Linux system that do

not match any of our current templates, which could include, for

instance, commits that only change feature dependencies in the

FM, commits that represent feature additions (which change the

three elements of the product line), or even refinement scenar-

ios such as feature renaming. As discussed in Section 4 , the pro-

posed templates were adapted from product line refinement tem-

plates proposed in previous works ( Neves et al., 2015 ). So, we aim

to investigate these 6221 instances in more detail, and, if neces-

sary, propose new templates to deal with them as well. 

We are not able to identify instances of all our current tem-

plates with the FEVER tool. For example, we found no instance

of the Transform Optional to Mandatory template. The Linux

Kconfig model does not provide a clear feature classification into

optional, mandatory, alternative and or . So, the current version of

the tool is not able to inform feature types. This would require

a deeper interpretation of the Kconfig model, and possibly adding

and improving modules of the FEVER tool. 

In the following, for each template, we discuss in more de-

tail the number of instances found. We also provide examples of

evolution scenarios that match our templates and show examples

that were excluded due to problems related to query and data set,

among others. 

Change Asset 

According to Dintzner et al. (2017) , around 80% of feature ori-

ented changes in Linux only touch the implementation, and do not
ffect the FM or CK. Confirming that, the Change Asset template

ad the highest occurrence rate, with 55,345 instances, which cor-

esponds to almost 90% of the evolution scenarios analysed. This

ight be due to Linux maturity level, and also to the fine granu-

arity of the commits observed in the analysed period. 

The Change Asset template matches any implementation

hange. Since we do not have control over these changes (they

ould be refinements or non-refinements, for instance), we use

uxiliary tools to have a more precise idea of changes. Knowing

recisely what are the changes made in Change Asset instances

s extremely important because they correspond to almost 90%

f our scenarios found and this could affect the applicability of

he Change Asset template. For instance, those scenarios classified

s refinement should not be considered instances of the Change

sset template. As number of occurrences is extremely high, we

ould not manually verify all cases. Thus, a number of these oc-

urrences might be full refinements. By manually analysing 50

hange Asset instances (randomly chosen between versions 3.15

nd 3.16), only 7 turned out to be asset refinements. The other

3 are non-refinements and the majority of them were bug fixes.

evelopers fixed such bugs, for instance, by modifying if-then-else

onditions. Based on this analysis, we raise the hypothesis that par-

ial refinements occur more frequently, and this makes the Change

sset template far more frequently applicable than the Refine As-

et template ( Neves et al., 2015 ). 

An example of a Change Asset scenario is the pair formed by

ommit 2627b7e15c 11 and its predecessor. In Listing 5 , a devel-

per removes the call to the ip_vs_conn_drop_conntrack function

we used the - symbol to indicate line removal) to avoid a crash,

s he explains in the message. This is the only change; the other

ines remain untouched. So, we consider this example to be a par-

ial refinement, as there is a clear intention to change the feature

ehaviour by solving a bug. Moreover, regardless of the commit

essage, function call removals are often not refinement transfor-

ations ( Borba et al., 2004; Cornélio et al., 2010 ). Unless the func-

ion has a void behaviour, the resulting program tends not to have

 compatible behaviour to the initial one. In this example, prod-

cts not containing the net/netfilter/ipvs/ip_vs_conn.c file are refined

ccording to the set of products S specified in the Change Asset

emplate. 

To better understand the type of changes in the 55,345 commits

eturned by the query, we analyse commit messages for identify-

ng terms that suggest that changes are not behaviour preserving.

sing Lucene , 12 a natural language processing tool we rank every

erm in the commit messages according to its frequency in the text

ormed by concatenation all messages. We then select a number

f best ranked terms and count the number of messages in which

hey appear. So we are able to know the number of commit mes-

ages that had each term. 

Lucene ranked 209.328 terms that were found in the 55,345

essages. We can see from Table 4 that Fix and Bug occupy the

http://github.com/torvalds/linux/commit/2627b7e15c
http://lucene.apache.org/
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Listing 5. An excerpt of “net/netfilter/ipvs/ip_vs_conn.c”. 

Table 4 

Frequent terms in Change Asset com- 

mit messages. 

Term Frequency Rank 

Use 12,609 (23.11%) 1 

Fix 11,836 (21.69%) 2 

Patch 9921 (18.18%) 3 

Add 9916 (18.17%) 4 

Remove 8352 (15.31%) 8 

Error 4200 (7.69%) 41 

Change 4131 (7.57%) 42 

Bug 1870 (3.43%) 146 

Failure 1228 (2.25%) 267 

Rename 1111 (2.03%) 305 

Modify 431 (0.79%) 954 

Refactor 422 (0.77%) 976 
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s  
nd and 146th positions, respectively. This suggests that a great

umber of the Change Asset instances are bug fix scenarios. Patch

s the 3rd most used term, which also suggests the high presence

f bug fixes or general improvements, which may not be code re-

nements. Other words that might suggest the presence of prod-

ct line refinement changes do not seem as frequent, like Rename

nd Refactor . This only gives a general idea, but we cannot be

ure about the exact changes performed in Change Asset without

nalysing the code. Messages may not be well-written, or might

e incomplete. Developers often do not explain in detail their com-

its and surely express differently their ideas, so this is just an ap-

roximation. Being conservative and considering that only the doc-

ments containing Bug and Fix represent partial refinement scenar-

os and all the others are refinement, we then have 12,680 Change

sset instances instead of 55,345. The number decreases consid-

rably, but we would still be able to support 22% of the analysed

cenarios. 

The Lucene tool automatically excludes terms that are not of

ur interest, like prepositions, pronouns, among others. We also

onfigured the tool to ignore others terms, such as signed and off,

hich are present at the end of every commit message and just

ollute the rank. Besides analysing the rank of every single term,

ucene also allows us to search for specific expressions, for exam-

le, the number of messages that contain bug and fix , and includ-

ng other possible terminations, like fixes . This provides a more

owerful search than the single term one, but there is no rank-

ng in this case. We found similar results by looking for expres-

ions involving terms, and the results are available in our website

 Partial refinement theory website ). 

In addition to analysing Change Asset commit messages, we

lso identified commits that only change spacing in code files by

sing Conflicts Analyser, 13 an open source tool that classifies con-

icts according to a set of patterns ( Accioly, 2015 ). Although we are

ot dealing with conflicts, the tool identifies differences between

ource code files. So, for every Change Asset instance, we compare
13 Conflicts Analyser website: http://twiki.cin.ufpe.br/twiki/bin/view/SPG/ 

onflictPatterns . 

v

r

he initial and final files. From the 55,345 commits returned in the

hange Asset query, 777 only change white spaces, so these can

e considered product line refinements, which corresponds to ap-

roximately 1,4% of the instances for the Change Asset template.

e consider this number to be high, but it depends on project de-

elopment practices. In the Linux case, changes have fine granular-

ty, so this seems to be common. Commit 2055fb41ea 14 is one of

he instances found. In this commit, a line break is added before

n if statement. No other changes are performed. 

Our template could still be applied in this situation, because

e do not make any restrictions to the changed artefact. However,

ne should rather make use of the Refine Asset template, as it

ives guarantees that all products are refined, differently from the

hange Asset template, that assumes that the asset is not refined

nd gives behaviour preservation guarantees for only a subset of

he existing products. For this reason, we exclude these instances.

he other three excluded instances are permission changes. For

xample, commit 186026874c 15 changes the permission code of a

 source file from 755 to 644 . In the Git version control system,

hich we deal with, permission changes may be committed in

rojects whose configuration file has the filemode parameter set to

rue , like the Linux Kernel. 

In summary, this analysis indicates that most evolution scenar-

os are partial refinements. Our manual analysis confirms this hy-

othesis, given that we found 43 non-refinements out of 50 evolu-

ion scenarios. As the data set is really huge (55345 Change Asset )

cenarios, it is impossible to analyse all of them manually. Using

ther tools to have a better understanding of the code is part of

ur future work. 

dding, Removing and Changing CK Lines 

In our sample, we found 18, 9 and 12 scenarios that respectively

orrespond to mapping changes, additions and removals. We man-

ally checked and confirmed the 39 instances. The numbers re-

arding these templates are not high because modifications focus-

ng only on the mapping rarely occur ( Kröher and Schmid, 2017 ),

o the Change CK Line , Add CK Lines and Remove CK Lines tem-

lates have a lower frequency when compared to others, such as

dd Assets . This might happen because most commits modify at

east one source code file and some of them also modify the FM.

he Change CK Line template presents the highest number of in-

tances of the three patterns, probably because developers often

emove and add mappings together with the respective source

ode or references to the FM. It is also possible that an evolution

cenario captured by one of our templates corresponds to a longer

equence of commits. Since we try to match each commit pair sep-

rately with the templates, this would explain the low occurrence.

We provide an example of a Change CK Line in-

tance in Listing 6 , which shows the differences between
14 http://github.com/torvalds/linux/commit/2055fb41ea . Jun 20, 2014; version 

3.16-rc3. 
15 http://github.com/torvalds/linux/commit/186026874c . Jul 2, 2014; version v3.16- 

c4. 

http://twiki.cin.ufpe.br/twiki/bin/view/SPG/ConflictPatterns
http://github.com/torvalds/linux/commit/2055fb41ea
http://github.com/torvalds/linux/commit/186026874c
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Listing 6. Changes made to “drivers/cpufreq/Makefile”. 

Listing 7. Changes made to “drivers/clk/samsung/Makefile”. 

Listing 8. Changes made to “drivers/clk/samsung/clk-exynos5410.c ”. 

Listing 9. Changes made to “include/dt-bindings/clock/exynos5410.h ”. 
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commit 5a90af67c2 16 and its predecessor. The presence of the

artefact davinci-cpufreq.o was conditioned to the activation

of CONFIG_ARCH_DAVINCI_DA850 . After the change, the CON-

FIG_ARCH_DAVINCI feature is mapped to this artefact instead. In

the message, the author explains that this commit fixes a build

error. In such situations, there are no changes to the FM and

implementation; only the CK changes, as we stated in our query.

In this case, our template guarantees that products without the

CONFIG_ARCH_DAVINCI_DA850 and CONFIG_ARCH_DAVINCI features

are refined. 

Each scenario is classified as compatible with one template

only, except for the Add CK Lines , Change CK Line and Remove CK

Lines templates. Since they were mined with the same query, we

noticed that some scenarios actually had instances of more than

one of the three patterns. Thus, a scenario might be classified as

an instance of both Remove CK Lines and Add CK Lines templates,

so we had to proceed with a manual analysis as discussed. 

Adding and Removing Assets 

FEVER returned 181 instances of the Add Assets template,

which were all manually checked to confirm that they really match

the template. Due to the tool imprecision, 13 of them did not.

Therefore, we exclude these instances and only 168 remain, which

precisely match our conditions and are instances of the template.

There are at least 16 assets removals. We did not investigate the

reason for such a lower removal rate. The results might be differ-

ent considering another interval and project. 

In Listings 7 , 8 and 9 , we show a scenario that matches the

Add Assets template. 17 Basically, a line is added to the Linux CK,

to map the CONFIG_SOC_EXYNOS5410 feature to the exynos5410.o

asset. As this asset is new, the clk-exynos5410.c and exynos5410.h

files are added to the implementation. So, as the Change CK Line

template requires, there is no change to the FM in this case. Also,

the changes in the CK and implementation need to be related, and

we do not allow source file removals or modifications. The only

change in this commit that is not listed here is regarding docu-

mentation, but we do not forbid any change to a non-source file. 

As we have already discussed, we only classify as Add Assets

instances, commits that only touch the implementation and CK. So,

other artefacts like the variability model are not allowed to change.

However, among the commits returned by FEVER for our Add As-
16 CK line change commit: http://github.com/torvalds/linux/commit/5a90af67c2 . 

July 10, 2014; version 3.16. 
17 Add assets commit: http://github.com/torvalds/linux/commit/e7ef0b632e . May 

26, 2014; version 3.16-rc1. 

q  

o  

v

ets query, we found 1 commit that changes the Kbuild file, 11 that

hange the Kconfig, and another where additional CK lines change.

n all these examples, there are additions to the Makefile mapping

nd implementation files. However, FEVER accidentally returned

ome instances that do not match our query. For example, commit

3e6573c48 18 and its predecessor change additional lines in the CK.

owever, by the tool imprecision, these extra changes do not ap-

ear in the data set, so it would not be possible to filter them. 

emove Feature 

Our query returned 93 feature removal scenarios, but only 68

ere classified as valid according to our templates. The other 25

on-removals are scenarios where the features were actually be-

ng moved. Commit messages help to identify these situations.

ll these excluded instances were found due to query impreci-

ion, so we are not aware of imprecision in the FEVER tool for

his template. One of the main problems is that we do not re-

trict source file modifications to deletions. Intuitively, one might

rgue that when a feature is removed from a product line, and no

ther changes are performed, we should have source file deletions,

ut not additions/modifications. This would be valid in a compo-

itional product line development context, where one code arte-

act implements exclusively one feature. However, in the Linux sys-

em, developers can make use of ifdefs , so an artefact may imple-

ent more than one feature, and removing a feature from the code

eans basically removing the respective ifdef . For this reason, we

llow source code removals and modifications, but we need to fil-

er them manually. We already provide a valid example of the Re-

ove Feature template instance in Section 2 , and the 68 cases are

vailable in our online appendix ( Partial refinement theory web-

ite ). 

.2.2. Soletta 

Soletta is a development framework that makes writing soft-

are for IoT (Internet of Things) devices easier. By abstracting

ardware and operating system details from a program, Soletta

llows developers to write software for controlling actuators and

ensors and communicating using standard technologies. 

The same process used in Linux to find template instances

as also applied to Soletta. By running FEVER and executing the

ueries, like the Remove Feature query detailed in Listing 4 , we

btain the numbers regarding the Soletta project for the period
18 http://github.com/torvalds/linux/commit/d3e6573c48 . Dec 24, 2013; version 

3.15-rc1. 

http://github.com/torvalds/linux/commit/5a90af67c2
http://github.com/torvalds/linux/commit/e7ef0b632e
http://github.com/torvalds/linux/commit/d3e6573c48
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Table 5 

Template occurrence - Soletta. 

Template Query returned Excluded Imprecision Source Remaining 

Change Asset (and possibly Refine Asset ) 1496 0 Query 1496 (65%) 

Add Assets 5 0 Tool 5 (0.22%) 

Remove Assets 0 0 Tool 0 (0%) 

Change CKLine 9 0 Query 9 (0.39%) 

Add CK Lines 3 0 Query 3 (0.13%) 

Remove CK Lines 0 0 Query 0 (0%) 

Remove Feature 5 3 Query 2 (0.09%) 
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anging from its creation in 26 Jun 2015 to 19 Apr 2016. This corre-

ponds to almost one year of development. Altogether, we analysed

300 commit pairs for the Soletta project. 

Table 5 shows that the numbers are significantly lower when

ompared to Linux. This was expected, as this project is consider-

bly smaller and we are analysing only 2300 commits. The Change

sset query returned 1496 instances, or 65% approximately. In the

inux project, this template corresponds to almost 90% of the com-

its. We believe that this difference is due to the commits granu-

arity and project’s maturity level. From the examples we observed,

t should be the case that commits have a finer granularity in the

inux project than in Soletta. Thus, developers commit more often.

t is expected, then, a higher number of Change Asset instances.

urthermore, Linux is considered a stable project, so changes are

erformed mostly to the code ( Dintzner et al., 2017 ), and there are

ess feature additions, for example, than a more recent project like

oletta. 

We only found five Add Assets instances. We expected to find

ore, as in the beginning the project might have a significant

umber of asset additions. Nevertheless, we suspect that most

sset additions are also feature addition scenarios, where, apart

rom CK and implementation, the FM also changes. These instances

ould best match the Add New Optional Feature refinement tem-

late proposed in previous work Passos et al. (2015) . There was no

sset removal that matched our Remove Assets template. This is

nderstandable because Soletta is relatively new. 

The numbers for Change CK Line and Add CK Lines were pro-

ortionately high than in Linux. A possible explanation is that ap-

roximately 90% of the commits in Linux only change the imple-

entation, contrasting with 65% in Soletta. Like Remove Assets ,

emove CK Lines had 0 instances. We found five instances of the

emove Feature , but three were excluded. So, only two remain.

his is also justifiable by the fact that this is a recent project, so

e expected to find a greater number of additions instead of re-

ovals. 

The results are summarised in Table 6 . Surprisingly, we found

nly one merge commit for this period in Soletta, which could be

ustified by the rebase practice. Thus, 2299 commits were anal-

sed. As we explained, the FEVER tool ignores merge commits. At

east 65.89% of the evolution scenarios would match our templates.

his rate is much lower than Linux, that is almost 90%. We be-

ieve that this difference is due to the projects maturity level. The

inux project is older and the analysed interval in Soletta includes

he start of the project, that tends to have more feature additions,
Table 6 

Template occurrence summary - Soletta. 

Commit type Number 

Any 2300 

Merge 1 

Analysed 2299 

Match our templates 1515 (65.89%) 

Not match any template 785 (34.14%) 
s

hich would not match any of our templates. Another possibility

s the granularity level for the changes. Linux commits have a finer

ranularity. So, each commit in Soletta possibly would be the re-

ult of applying in sequence more than one partially safe evolution

emplate. Since we try to match each commit pair to a single tem-

late, we do not include such instance. 

We have the same problems in Soletta and Linux regarding the

esults, as we use the same queries and FEVER in both projects.

hange Asset instances are the most risky, since we do not pre-

isely analyse the performed changes. So, we do not know the

umber of refinements, although there might be more partial re-

nements. Although we did not find any bug in the data set for

he Add Assets and Remove Assets , we encountered such errors in

inux, so we do not eliminate this possibility. For the other four

emplates, the queries are not precise enough and we do not con-

ider problems in the data set because we did not find any of

hem. 

We excluded three Remove Feature instances from Soletta re-

ults. Commit 5293f12e59 19 was excluded because it is basically a

enaming, where the FLOW_NODE_TYPE_FREEGEOIP feature is re-

amed to FLOW_NODE_TYPE_LOCATION . So, this example is not

onsidered to be a feature removal. We had similar situations in

ommits 8d2e8aeb2c and 446bc7e43c . We can see removals, but the

eatures are actually renamed into others. 

By running the Conflicts Analyser tool over Soletta Change As-

et instances, we did not find any commit changing only white

paces. This may be due to two reasons: the number of processed

ommits (2300) and the project development practices. It might

e the case that in the Linux project, commits have finer granu-

arity and developers accumulate less changes before committing.

e also perform the term analysis for commit messages in So-

etta. Lucene found a total of 6028 terms in the 1496 messages. As

hown in Table 7 , the word fix occupies the top again, as the most

sed term, appearing in 356 documents. Other words found in the

inux analysis like Add, Error, Remove, Bug and Refactoring also ap-

ear, but in lower positions. Although this project is different, we

an see some similarity to Linux rank. This result indicates that

Table 7 

Frequent terms in Change Asset com- 

mit messages. 

Term Frequency Rank 

Fix 356 1 

Add 307 2 

Error 95 22 

Remove 78 40 

Change 74 42 

Bug 14 390 

Failure 5 825 

Modify 5 826 

Refactoring 3 1152 
19 http://github.com/solettaproject/soletta/commit/5293f12e59 . Sep 10, 2015; ver- 

ion v1_beta4. 

http://github.com/solettaproject/soletta/commit/5293f12e59
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bug fixes occur in a significant frequency in both projects, which is

possibly higher than refactoring scenarios. 

6.2.3. Conclusion 

We analyse two product line systems to discover how often

could our partially safe evolution templates be applicable. In sum-

mary, we found that the Change Asset template would be appli-

cable to most evolution scenarios in both systems analysed (90%

and 65%, respectively). The other templates, in contrast, had much

lower occurrence rates (they only sum 0.45% and 0.83% altogether).

Nevertheless, they could still be useful in some scenarios. We do

not present results for the Transform Optional to Mandatory

and Move Feature templates, but, based on our study, we expect

them to have low occurrence rates as well. Our results confirm

previous study ( Dintzner et al., 2017 ) evidence that the FM and CK

are not changed as often as the implementation. We should also

remind that since the two systems analysed deal with transforma-

tional CKs, our compositional templates could not be applicable.

However, the transformational ones are compatible and also the

general ones, since they do not assume any particular CK language.

It is part of our future work analysing product lines dealing with

compositional CKs. 

This evaluation extends our previous one ( Sampaio et al., 2016 )

by considering annotation templates in addition to the composi-

tional ones. We also analyse the Soletta project, which was not

analysed before. We should highlight that while doing a deeper

analysis, we discovered bugs in our previous Linux results. In par-

ticular, the number of commits we report here is slightly lower

because, due to an error in our data set, we computed some ex-

amples twice. This has also directly impacted the results. Never-

theless, in general, our results have actually been improved. Most

of them changed less than 0.1%, but the Change Asset had an in-

crease in the number of instances of approximately 7%. 

6.3. Threats to validity 

As this is a preliminary evaluation, in this section, we discuss

risks to internal, external and construct validity. 

Construct : As already mentioned in Section 6.2 , to find occur-

rences of the Change Asset template, we search for any change in

the implementation and do not analyse which type of modifica-

tion was performed in the source file, thus possibly also retrieving

commits which actually represent occurrences of the Refine Asset

template Neves et al. (2015) . Although we manually examined 50

commits and performed analysis using both Lucene and Conflicts

Analyser, we cannot generalise to all commits. Regarding the term

frequency analysis, it is superficial to make conclusions, specially

considering that developers express differently their ideas. More-

over, we do not consider synonyms in that analysis, which could

also lead to more precise results. Scenarios matching the other

templates can be safe only in pathological cases, so we do not take

them into consideration. 

Internal : We should consider that the tool we use may have

bugs. However, we perform manual analysis to eliminate all false

positives, except for the Change Asset instances. For these, we per-

form a complementary analysis based on commit messages. Thus,

we may only have false negatives, which would actually improve

our results. For example, if in a Remove Feature scenario, FEVER

does not capture that the three elements of the product line have

been changed, our query will not return such scenario. We dis-

cussed such examples in the previous section. 

False negatives rate also depends on the number of commits

matched to an evolution scenario. We analysed each commit sepa-

rately. For instance, one could remove a feature in two parts: first,

the FM and CK could be changed, and in the subsequent com-

mit only the implementation would be removed. In this situation,
hese two commits would not match any template, although, in

equence, they constitute a feature removal scenario. 

Finally, we assume certain template conditions to be true, such

s well-formedness. To reduce such imprecision we should use a

trategy to verify well-formedness ( Braz et al., 2016 ) to make sure

hat the template would be applicable. In our analysis, we make

he open world assumption. Consequently, we analyse the scenar-

os locally instead of globally. For instance, in the Change Asset

nstances, we analyse the changed files but nothing else. It could

e the case that the change seems to be a partial refinement (such

s function call removals), but the global effect might be different.

hus, this is also a threat. In systems such as Linux it is not trivial

o analyse changes globally and this is also part of our future work.

External : We only examined Soletta and a small part of the

inux repository history. Hence, we cannot generalise the result

or other history periods or projects, which may have different

evelopment practices, such as commits with coarser granularity

nd different programming languages. Perhaps, if we analyse other

rojects, the Change Asset template could be used together with

thers, since one might change not only the implementation but

lso the FM and the CK in a single commit. However, as a con-

equence, other templates could have a higher rate of occurrence.

lthough we do not include other projects, we consider the Linux

ystem significant because of its popularity and complexity. 

. Related work 

As discussed, this work extends the partial refinement theory

or product lines ( Sampaio et al., 2016 ), by presenting new proper-

ies (such as compositionality), and a broader evaluation study. We

lso rely on some other previous works. Alves et al. (2006) and

orba et al. (2012) define safe evolution for product lines. A prod-

ct line is safely evolved when behaviour preservation holds for all

nitial products, and this is formalised through a refinement the-

ry. Teixeira et al. (2015b) extended this work for product pop-

lations and multi product lines. With the aim of guiding devel-

pers in possible refinement scenarios, Neves et al. (2015) and

enbassat et al. (2016) , among others, propose template catalogues

o abstract safe evolution scenarios. Additionally, a product line of

heories for reasoning about safe evolution of product lines was

roposed by Teixeira et al. (2015a) to investigate and explore sim-

larities between different languages that specify product line ele-

ents. 

Dintzner et al. (2014) present a classification of feature changes

s well as a tool named FMDiff to automatically analyse differences

n Linux variability models. The change categories are specific to

tructures found in Kconfig specifications, such as feature depen-

ency changes. Finally, they evaluate the tool by analysing com-

its from the Linux repository history. Dintzner et al. (2017) also

eveloped the FEVER tool, which we use in our evaluation, to en-

bles the analysis of Linux commits and precisely informs which

rtefacts are affected by a change. 

Thüm et al. (2009) classify FM edits into refactorings, special-

sations, generalisations and arbitrary edits by using satisfiability

olvers. Our work differs because it is not our goal to build a tool

nd to analyse the feature model structure only. However, our the-

ry could be mechanised in such tools to provide even more sup-

ort for developers when making changes to the FM, by providing

he subset of refined configurations in each case. 

Passos et al. (2015) propose a pattern catalogue containing fea-

ure addition and removal templates applicable in the Linux con-

ext. The main difference from their patterns to ours is that they

o not focus on giving guarantees for developers in partially safe

volution scenarios. Additionally, they present both refinement and

otential non-refinement templates. To verify the scenarios oc-

urrence in practice, they conducted an experiment by manually
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nalysing the Linux repository trying to find instances of their tem-

lates and discarded the ones that did not present a significant

ccurrence rate. While they focus on proposing templates for the

inux context, our aim is to propose a new refinement theory and

emplates for product lines in general. They also suggest the need

or a new theory to address non-refinement scenarios. 

Nieke et al. (2016) analyse feature model evolution and de-

ne temporal feature models, which allow features to have expi-

ation date. For instance, if a feature is removed it is no longer

alid. It is also possible to have locked configurations. A configu-

ation that is locked should never be broken. This information is

chieved through analysing possible changes, such as feature re-

aming, deletion, among others, to temporal FMs. This work re-

embles ours because it gives support for some partial refinements

egarding the variability model. Developers can change some con-

gurations and still be certified that the locked ones remain valid.

owever, they only analyse the variability model and do not pro-

ose a partial refinement theory, differently from our work. 

Also in the context of the Linux system, Ziegler et al.

2016) present an approach to identify relationships between con-

guration options, which allows one to discover source files that

ight be affected due to a change in a configuration option. They

ound that most configuration options affect few files only, and a

ew options affect a significant number of files. This work is related

o ours, as we also analyse changes in the Linux system. How-

ver, this is not the core of our work. We could use their approach

o present more detail of the evolution scenarios to give an idea

f the number of products affected by a change to a configura-

ion option. Furthermore, Lotufo et al. (2010) provide a quantitative

nd qualitative analysis of the Linux product line. They discovered

hanges related to the FM, such as the number of features and the

ree height, and how these changes influence in the Kconfig model

omplexity. While they focus on the Linux FM, we are interested

n changes to the three elements of a product line. 

Seidl et al. (2012) provide a remapping approach to keep prod-

ct line artefacts after evolution. The authors classify changes to

ach product line element and inform developers possible incon-

istencies that may arise. Our solution could be integrated to theirs

n establishing other possible categories and supporting the incon-

istency analysis, as we provide an impact analysis for a set of evo-

ution scenarios. 

Finally, there are several works ( Ren et al., 2004; Zhang et al.,

012; Mongiovi, 2011 ) that propose change impact analysers for

pecific contexts. The approaches involve running tests to check

hether behaviour is preserved after a change. Our work is also

elated to change impact analysis but we do not deal with any

rogramming language in particular, so our discussion is more ab-

tract. Moreover, our theory provides formal guarantees. Further-

ore, we reason about changes not only to code, but also FMs and

Ks, as we are dealing with product lines. 

. Conclusion and future work 

In this work, we extend our partially safe evolution notion for

roduct lines, by supporting developers when evolving the AM and

K providing compositionality properties for these two artefacts.

e also analyse the compatibility of our templates with existing

K notions. As a result, we present partial refinement transforma-

ional templates to deal with CKs containing transformations, such

s preprocess . Additionally, we extend our quantitative evaluation

y analysing another product line, Soletta, and providing further

nformation regarding Linux results. The motivation of this work is

hat product line evolution is a challenging and complex task. It is

mportant to give guarantees during this process, even for a prod-

ct subset only. Especially in highly configurable systems like the

inux Kernel, there are thousands of possible valid configurations
nd predicting whether products have their behaviour preserved is

ften hard. 

As future work, we intend to expand our theory to deal with

unction transformations to specify refinement (see Section 3.4 ),

nd also prove that refinement and partial refinement commute.

dditionally, we intend to correlate our work with previous work

 Teixeira et al., 2015a ) that defines a product line of product line

heories. This way, we could apply our theory to itself and inte-

rate our new theory to the existing product line of theories. Ad-

itionally, we could also improve our evaluation and further in-

estigate Change Asset instances. Although we provide a commit

essages analysis, it would be useful to know precisely the type

f changes in each scenario, and also classify them in refinements

nd partial refinements. 

Furthermore, we could provide the set of refined products in

ach scenario. This way, developers know, for instance, when con-

idering the motivating example shown in Section 2 , the exact set

f products that had the LEDS_RENESAS_TPU . We did not evaluate

he quality of our templates by means of the value of S in each

cenario. As already discussed, if all products have this feature, we

ould have no products refined and this means an empty S . Con-

equently, developers would have no support. In contrast, if the

eature is not present in a high number of products, the support

ends to be much higher. So, this is a limitation and part of our

uture work. 

Finally, we would like to develop a tool to support developers

n software product line evolution. We could implement transfor-

ations described in the proposed templates to allow developers

o automatically evolve product lines and inform the set of prod-

cts refined. So, the tool would provide another layer of abstraction

nd use the partial refinement theory concepts in background. 
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